File:  [local] / rpl / lapack / lapack / zunmbr.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:44 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZUNMBR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZUNMBR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmbr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmbr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmbr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
   22: *                          LDC, WORK, LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          SIDE, TRANS, VECT
   26: *       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C
   39: *> with
   40: *>                 SIDE = 'L'     SIDE = 'R'
   41: *> TRANS = 'N':      Q * C          C * Q
   42: *> TRANS = 'C':      Q**H * C       C * Q**H
   43: *>
   44: *> If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C
   45: *> with
   46: *>                 SIDE = 'L'     SIDE = 'R'
   47: *> TRANS = 'N':      P * C          C * P
   48: *> TRANS = 'C':      P**H * C       C * P**H
   49: *>
   50: *> Here Q and P**H are the unitary matrices determined by ZGEBRD when
   51: *> reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
   52: *> and P**H are defined as products of elementary reflectors H(i) and
   53: *> G(i) respectively.
   54: *>
   55: *> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
   56: *> order of the unitary matrix Q or P**H that is applied.
   57: *>
   58: *> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
   59: *> if nq >= k, Q = H(1) H(2) . . . H(k);
   60: *> if nq < k, Q = H(1) H(2) . . . H(nq-1).
   61: *>
   62: *> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
   63: *> if k < nq, P = G(1) G(2) . . . G(k);
   64: *> if k >= nq, P = G(1) G(2) . . . G(nq-1).
   65: *> \endverbatim
   66: *
   67: *  Arguments:
   68: *  ==========
   69: *
   70: *> \param[in] VECT
   71: *> \verbatim
   72: *>          VECT is CHARACTER*1
   73: *>          = 'Q': apply Q or Q**H;
   74: *>          = 'P': apply P or P**H.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] SIDE
   78: *> \verbatim
   79: *>          SIDE is CHARACTER*1
   80: *>          = 'L': apply Q, Q**H, P or P**H from the Left;
   81: *>          = 'R': apply Q, Q**H, P or P**H from the Right.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] TRANS
   85: *> \verbatim
   86: *>          TRANS is CHARACTER*1
   87: *>          = 'N':  No transpose, apply Q or P;
   88: *>          = 'C':  Conjugate transpose, apply Q**H or P**H.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] M
   92: *> \verbatim
   93: *>          M is INTEGER
   94: *>          The number of rows of the matrix C. M >= 0.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] N
   98: *> \verbatim
   99: *>          N is INTEGER
  100: *>          The number of columns of the matrix C. N >= 0.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] K
  104: *> \verbatim
  105: *>          K is INTEGER
  106: *>          If VECT = 'Q', the number of columns in the original
  107: *>          matrix reduced by ZGEBRD.
  108: *>          If VECT = 'P', the number of rows in the original
  109: *>          matrix reduced by ZGEBRD.
  110: *>          K >= 0.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] A
  114: *> \verbatim
  115: *>          A is COMPLEX*16 array, dimension
  116: *>                                (LDA,min(nq,K)) if VECT = 'Q'
  117: *>                                (LDA,nq)        if VECT = 'P'
  118: *>          The vectors which define the elementary reflectors H(i) and
  119: *>          G(i), whose products determine the matrices Q and P, as
  120: *>          returned by ZGEBRD.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] LDA
  124: *> \verbatim
  125: *>          LDA is INTEGER
  126: *>          The leading dimension of the array A.
  127: *>          If VECT = 'Q', LDA >= max(1,nq);
  128: *>          if VECT = 'P', LDA >= max(1,min(nq,K)).
  129: *> \endverbatim
  130: *>
  131: *> \param[in] TAU
  132: *> \verbatim
  133: *>          TAU is COMPLEX*16 array, dimension (min(nq,K))
  134: *>          TAU(i) must contain the scalar factor of the elementary
  135: *>          reflector H(i) or G(i) which determines Q or P, as returned
  136: *>          by ZGEBRD in the array argument TAUQ or TAUP.
  137: *> \endverbatim
  138: *>
  139: *> \param[in,out] C
  140: *> \verbatim
  141: *>          C is COMPLEX*16 array, dimension (LDC,N)
  142: *>          On entry, the M-by-N matrix C.
  143: *>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
  144: *>          or P*C or P**H*C or C*P or C*P**H.
  145: *> \endverbatim
  146: *>
  147: *> \param[in] LDC
  148: *> \verbatim
  149: *>          LDC is INTEGER
  150: *>          The leading dimension of the array C. LDC >= max(1,M).
  151: *> \endverbatim
  152: *>
  153: *> \param[out] WORK
  154: *> \verbatim
  155: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  156: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  157: *> \endverbatim
  158: *>
  159: *> \param[in] LWORK
  160: *> \verbatim
  161: *>          LWORK is INTEGER
  162: *>          The dimension of the array WORK.
  163: *>          If SIDE = 'L', LWORK >= max(1,N);
  164: *>          if SIDE = 'R', LWORK >= max(1,M);
  165: *>          if N = 0 or M = 0, LWORK >= 1.
  166: *>          For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
  167: *>          and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
  168: *>          optimal blocksize. (NB = 0 if M = 0 or N = 0.)
  169: *>
  170: *>          If LWORK = -1, then a workspace query is assumed; the routine
  171: *>          only calculates the optimal size of the WORK array, returns
  172: *>          this value as the first entry of the WORK array, and no error
  173: *>          message related to LWORK is issued by XERBLA.
  174: *> \endverbatim
  175: *>
  176: *> \param[out] INFO
  177: *> \verbatim
  178: *>          INFO is INTEGER
  179: *>          = 0:  successful exit
  180: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  181: *> \endverbatim
  182: *
  183: *  Authors:
  184: *  ========
  185: *
  186: *> \author Univ. of Tennessee
  187: *> \author Univ. of California Berkeley
  188: *> \author Univ. of Colorado Denver
  189: *> \author NAG Ltd.
  190: *
  191: *> \ingroup complex16OTHERcomputational
  192: *
  193: *  =====================================================================
  194:       SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
  195:      $                   LDC, WORK, LWORK, INFO )
  196: *
  197: *  -- LAPACK computational routine --
  198: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  199: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  200: *
  201: *     .. Scalar Arguments ..
  202:       CHARACTER          SIDE, TRANS, VECT
  203:       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
  204: *     ..
  205: *     .. Array Arguments ..
  206:       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
  207: *     ..
  208: *
  209: *  =====================================================================
  210: *
  211: *     .. Local Scalars ..
  212:       LOGICAL            APPLYQ, LEFT, LQUERY, NOTRAN
  213:       CHARACTER          TRANST
  214:       INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
  215: *     ..
  216: *     .. External Functions ..
  217:       LOGICAL            LSAME
  218:       INTEGER            ILAENV
  219:       EXTERNAL           LSAME, ILAENV
  220: *     ..
  221: *     .. External Subroutines ..
  222:       EXTERNAL           XERBLA, ZUNMLQ, ZUNMQR
  223: *     ..
  224: *     .. Intrinsic Functions ..
  225:       INTRINSIC          MAX, MIN
  226: *     ..
  227: *     .. Executable Statements ..
  228: *
  229: *     Test the input arguments
  230: *
  231:       INFO = 0
  232:       APPLYQ = LSAME( VECT, 'Q' )
  233:       LEFT = LSAME( SIDE, 'L' )
  234:       NOTRAN = LSAME( TRANS, 'N' )
  235:       LQUERY = ( LWORK.EQ.-1 )
  236: *
  237: *     NQ is the order of Q or P and NW is the minimum dimension of WORK
  238: *
  239:       IF( LEFT ) THEN
  240:          NQ = M
  241:          NW = MAX( 1, N )
  242:       ELSE
  243:          NQ = N
  244:          NW = MAX( 1, M )
  245:       END IF
  246:       IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
  247:          INFO = -1
  248:       ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  249:          INFO = -2
  250:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  251:          INFO = -3
  252:       ELSE IF( M.LT.0 ) THEN
  253:          INFO = -4
  254:       ELSE IF( N.LT.0 ) THEN
  255:          INFO = -5
  256:       ELSE IF( K.LT.0 ) THEN
  257:          INFO = -6
  258:       ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
  259:      $         ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
  260:      $          THEN
  261:          INFO = -8
  262:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  263:          INFO = -11
  264:       ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  265:          INFO = -13
  266:       END IF
  267: *
  268:       IF( INFO.EQ.0 ) THEN
  269:          IF( M.GT.0 .AND. N.GT.0 ) THEN
  270:             IF( APPLYQ ) THEN
  271:                IF( LEFT ) THEN
  272:                   NB = ILAENV( 1, 'ZUNMQR', SIDE // TRANS, M-1, N, M-1,
  273:      $                 -1 )
  274:                ELSE
  275:                   NB = ILAENV( 1, 'ZUNMQR', SIDE // TRANS, M, N-1, N-1,
  276:      $                 -1 )
  277:                END IF
  278:             ELSE
  279:                IF( LEFT ) THEN
  280:                   NB = ILAENV( 1, 'ZUNMLQ', SIDE // TRANS, M-1, N, M-1,
  281:      $                 -1 )
  282:                ELSE
  283:                   NB = ILAENV( 1, 'ZUNMLQ', SIDE // TRANS, M, N-1, N-1,
  284:      $                 -1 )
  285:                END IF
  286:             END IF
  287:             LWKOPT = NW*NB
  288:          ELSE
  289:             LWKOPT = 1
  290:          END IF
  291:          WORK( 1 ) = LWKOPT
  292:       END IF
  293: *
  294:       IF( INFO.NE.0 ) THEN
  295:          CALL XERBLA( 'ZUNMBR', -INFO )
  296:          RETURN
  297:       ELSE IF( LQUERY ) THEN
  298:          RETURN
  299:       END IF
  300: *
  301: *     Quick return if possible
  302: *
  303:       IF( M.EQ.0 .OR. N.EQ.0 )
  304:      $   RETURN
  305: *
  306:       IF( APPLYQ ) THEN
  307: *
  308: *        Apply Q
  309: *
  310:          IF( NQ.GE.K ) THEN
  311: *
  312: *           Q was determined by a call to ZGEBRD with nq >= k
  313: *
  314:             CALL ZUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  315:      $                   WORK, LWORK, IINFO )
  316:          ELSE IF( NQ.GT.1 ) THEN
  317: *
  318: *           Q was determined by a call to ZGEBRD with nq < k
  319: *
  320:             IF( LEFT ) THEN
  321:                MI = M - 1
  322:                NI = N
  323:                I1 = 2
  324:                I2 = 1
  325:             ELSE
  326:                MI = M
  327:                NI = N - 1
  328:                I1 = 1
  329:                I2 = 2
  330:             END IF
  331:             CALL ZUNMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
  332:      $                   C( I1, I2 ), LDC, WORK, LWORK, IINFO )
  333:          END IF
  334:       ELSE
  335: *
  336: *        Apply P
  337: *
  338:          IF( NOTRAN ) THEN
  339:             TRANST = 'C'
  340:          ELSE
  341:             TRANST = 'N'
  342:          END IF
  343:          IF( NQ.GT.K ) THEN
  344: *
  345: *           P was determined by a call to ZGEBRD with nq > k
  346: *
  347:             CALL ZUNMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
  348:      $                   WORK, LWORK, IINFO )
  349:          ELSE IF( NQ.GT.1 ) THEN
  350: *
  351: *           P was determined by a call to ZGEBRD with nq <= k
  352: *
  353:             IF( LEFT ) THEN
  354:                MI = M - 1
  355:                NI = N
  356:                I1 = 2
  357:                I2 = 1
  358:             ELSE
  359:                MI = M
  360:                NI = N - 1
  361:                I1 = 1
  362:                I2 = 2
  363:             END IF
  364:             CALL ZUNMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
  365:      $                   TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
  366:          END IF
  367:       END IF
  368:       WORK( 1 ) = LWKOPT
  369:       RETURN
  370: *
  371: *     End of ZUNMBR
  372: *
  373:       END

CVSweb interface <joel.bertrand@systella.fr>