Annotation of rpl/lapack/lapack/zunmbr.f, revision 1.17

1.8       bertrand    1: *> \brief \b ZUNMBR
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download ZUNMBR + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunmbr.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunmbr.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunmbr.f">
1.8       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
                     22: *                          LDC, WORK, LWORK, INFO )
1.14      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          SIDE, TRANS, VECT
                     26: *       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
                     30: *       ..
1.14      bertrand   31: *
1.8       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C
                     39: *> with
                     40: *>                 SIDE = 'L'     SIDE = 'R'
                     41: *> TRANS = 'N':      Q * C          C * Q
                     42: *> TRANS = 'C':      Q**H * C       C * Q**H
                     43: *>
                     44: *> If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C
                     45: *> with
                     46: *>                 SIDE = 'L'     SIDE = 'R'
                     47: *> TRANS = 'N':      P * C          C * P
                     48: *> TRANS = 'C':      P**H * C       C * P**H
                     49: *>
                     50: *> Here Q and P**H are the unitary matrices determined by ZGEBRD when
                     51: *> reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
                     52: *> and P**H are defined as products of elementary reflectors H(i) and
                     53: *> G(i) respectively.
                     54: *>
                     55: *> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
                     56: *> order of the unitary matrix Q or P**H that is applied.
                     57: *>
                     58: *> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
                     59: *> if nq >= k, Q = H(1) H(2) . . . H(k);
                     60: *> if nq < k, Q = H(1) H(2) . . . H(nq-1).
                     61: *>
                     62: *> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
                     63: *> if k < nq, P = G(1) G(2) . . . G(k);
                     64: *> if k >= nq, P = G(1) G(2) . . . G(nq-1).
                     65: *> \endverbatim
                     66: *
                     67: *  Arguments:
                     68: *  ==========
                     69: *
                     70: *> \param[in] VECT
                     71: *> \verbatim
                     72: *>          VECT is CHARACTER*1
                     73: *>          = 'Q': apply Q or Q**H;
                     74: *>          = 'P': apply P or P**H.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] SIDE
                     78: *> \verbatim
                     79: *>          SIDE is CHARACTER*1
                     80: *>          = 'L': apply Q, Q**H, P or P**H from the Left;
                     81: *>          = 'R': apply Q, Q**H, P or P**H from the Right.
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] TRANS
                     85: *> \verbatim
                     86: *>          TRANS is CHARACTER*1
                     87: *>          = 'N':  No transpose, apply Q or P;
                     88: *>          = 'C':  Conjugate transpose, apply Q**H or P**H.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] M
                     92: *> \verbatim
                     93: *>          M is INTEGER
                     94: *>          The number of rows of the matrix C. M >= 0.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] N
                     98: *> \verbatim
                     99: *>          N is INTEGER
                    100: *>          The number of columns of the matrix C. N >= 0.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] K
                    104: *> \verbatim
                    105: *>          K is INTEGER
                    106: *>          If VECT = 'Q', the number of columns in the original
                    107: *>          matrix reduced by ZGEBRD.
                    108: *>          If VECT = 'P', the number of rows in the original
                    109: *>          matrix reduced by ZGEBRD.
                    110: *>          K >= 0.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in] A
                    114: *> \verbatim
                    115: *>          A is COMPLEX*16 array, dimension
                    116: *>                                (LDA,min(nq,K)) if VECT = 'Q'
                    117: *>                                (LDA,nq)        if VECT = 'P'
                    118: *>          The vectors which define the elementary reflectors H(i) and
                    119: *>          G(i), whose products determine the matrices Q and P, as
                    120: *>          returned by ZGEBRD.
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in] LDA
                    124: *> \verbatim
                    125: *>          LDA is INTEGER
                    126: *>          The leading dimension of the array A.
                    127: *>          If VECT = 'Q', LDA >= max(1,nq);
                    128: *>          if VECT = 'P', LDA >= max(1,min(nq,K)).
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in] TAU
                    132: *> \verbatim
                    133: *>          TAU is COMPLEX*16 array, dimension (min(nq,K))
                    134: *>          TAU(i) must contain the scalar factor of the elementary
                    135: *>          reflector H(i) or G(i) which determines Q or P, as returned
                    136: *>          by ZGEBRD in the array argument TAUQ or TAUP.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in,out] C
                    140: *> \verbatim
                    141: *>          C is COMPLEX*16 array, dimension (LDC,N)
                    142: *>          On entry, the M-by-N matrix C.
                    143: *>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
                    144: *>          or P*C or P**H*C or C*P or C*P**H.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[in] LDC
                    148: *> \verbatim
                    149: *>          LDC is INTEGER
                    150: *>          The leading dimension of the array C. LDC >= max(1,M).
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] WORK
                    154: *> \verbatim
                    155: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    156: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[in] LWORK
                    160: *> \verbatim
                    161: *>          LWORK is INTEGER
                    162: *>          The dimension of the array WORK.
                    163: *>          If SIDE = 'L', LWORK >= max(1,N);
                    164: *>          if SIDE = 'R', LWORK >= max(1,M);
                    165: *>          if N = 0 or M = 0, LWORK >= 1.
                    166: *>          For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
                    167: *>          and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
                    168: *>          optimal blocksize. (NB = 0 if M = 0 or N = 0.)
                    169: *>
                    170: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    171: *>          only calculates the optimal size of the WORK array, returns
                    172: *>          this value as the first entry of the WORK array, and no error
                    173: *>          message related to LWORK is issued by XERBLA.
                    174: *> \endverbatim
                    175: *>
                    176: *> \param[out] INFO
                    177: *> \verbatim
                    178: *>          INFO is INTEGER
                    179: *>          = 0:  successful exit
                    180: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    181: *> \endverbatim
                    182: *
                    183: *  Authors:
                    184: *  ========
                    185: *
1.14      bertrand  186: *> \author Univ. of Tennessee
                    187: *> \author Univ. of California Berkeley
                    188: *> \author Univ. of Colorado Denver
                    189: *> \author NAG Ltd.
1.8       bertrand  190: *
                    191: *> \ingroup complex16OTHERcomputational
                    192: *
                    193: *  =====================================================================
1.1       bertrand  194:       SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
                    195:      $                   LDC, WORK, LWORK, INFO )
                    196: *
1.17    ! bertrand  197: *  -- LAPACK computational routine --
1.1       bertrand  198: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    199: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    200: *
                    201: *     .. Scalar Arguments ..
                    202:       CHARACTER          SIDE, TRANS, VECT
                    203:       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
                    204: *     ..
                    205: *     .. Array Arguments ..
                    206:       COMPLEX*16         A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
                    207: *     ..
                    208: *
                    209: *  =====================================================================
                    210: *
                    211: *     .. Local Scalars ..
                    212:       LOGICAL            APPLYQ, LEFT, LQUERY, NOTRAN
                    213:       CHARACTER          TRANST
                    214:       INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
                    215: *     ..
                    216: *     .. External Functions ..
                    217:       LOGICAL            LSAME
                    218:       INTEGER            ILAENV
                    219:       EXTERNAL           LSAME, ILAENV
                    220: *     ..
                    221: *     .. External Subroutines ..
                    222:       EXTERNAL           XERBLA, ZUNMLQ, ZUNMQR
                    223: *     ..
                    224: *     .. Intrinsic Functions ..
                    225:       INTRINSIC          MAX, MIN
                    226: *     ..
                    227: *     .. Executable Statements ..
                    228: *
                    229: *     Test the input arguments
                    230: *
                    231:       INFO = 0
                    232:       APPLYQ = LSAME( VECT, 'Q' )
                    233:       LEFT = LSAME( SIDE, 'L' )
                    234:       NOTRAN = LSAME( TRANS, 'N' )
                    235:       LQUERY = ( LWORK.EQ.-1 )
                    236: *
                    237: *     NQ is the order of Q or P and NW is the minimum dimension of WORK
                    238: *
                    239:       IF( LEFT ) THEN
                    240:          NQ = M
1.17    ! bertrand  241:          NW = MAX( 1, N )
1.1       bertrand  242:       ELSE
                    243:          NQ = N
1.17    ! bertrand  244:          NW = MAX( 1, M )
1.1       bertrand  245:       END IF
                    246:       IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
                    247:          INFO = -1
                    248:       ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
                    249:          INFO = -2
                    250:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
                    251:          INFO = -3
                    252:       ELSE IF( M.LT.0 ) THEN
                    253:          INFO = -4
                    254:       ELSE IF( N.LT.0 ) THEN
                    255:          INFO = -5
                    256:       ELSE IF( K.LT.0 ) THEN
                    257:          INFO = -6
                    258:       ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
                    259:      $         ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
                    260:      $          THEN
                    261:          INFO = -8
                    262:       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
                    263:          INFO = -11
1.17    ! bertrand  264:       ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
1.1       bertrand  265:          INFO = -13
                    266:       END IF
                    267: *
                    268:       IF( INFO.EQ.0 ) THEN
1.17    ! bertrand  269:          IF( M.GT.0 .AND. N.GT.0 ) THEN
1.1       bertrand  270:             IF( APPLYQ ) THEN
                    271:                IF( LEFT ) THEN
                    272:                   NB = ILAENV( 1, 'ZUNMQR', SIDE // TRANS, M-1, N, M-1,
                    273:      $                 -1 )
                    274:                ELSE
                    275:                   NB = ILAENV( 1, 'ZUNMQR', SIDE // TRANS, M, N-1, N-1,
                    276:      $                 -1 )
                    277:                END IF
                    278:             ELSE
                    279:                IF( LEFT ) THEN
                    280:                   NB = ILAENV( 1, 'ZUNMLQ', SIDE // TRANS, M-1, N, M-1,
                    281:      $                 -1 )
                    282:                ELSE
                    283:                   NB = ILAENV( 1, 'ZUNMLQ', SIDE // TRANS, M, N-1, N-1,
                    284:      $                 -1 )
                    285:                END IF
                    286:             END IF
1.17    ! bertrand  287:             LWKOPT = NW*NB
1.1       bertrand  288:          ELSE
                    289:             LWKOPT = 1
                    290:          END IF
                    291:          WORK( 1 ) = LWKOPT
                    292:       END IF
                    293: *
                    294:       IF( INFO.NE.0 ) THEN
                    295:          CALL XERBLA( 'ZUNMBR', -INFO )
                    296:          RETURN
                    297:       ELSE IF( LQUERY ) THEN
                    298:          RETURN
                    299:       END IF
                    300: *
                    301: *     Quick return if possible
                    302: *
                    303:       IF( M.EQ.0 .OR. N.EQ.0 )
                    304:      $   RETURN
                    305: *
                    306:       IF( APPLYQ ) THEN
                    307: *
                    308: *        Apply Q
                    309: *
                    310:          IF( NQ.GE.K ) THEN
                    311: *
                    312: *           Q was determined by a call to ZGEBRD with nq >= k
                    313: *
                    314:             CALL ZUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
                    315:      $                   WORK, LWORK, IINFO )
                    316:          ELSE IF( NQ.GT.1 ) THEN
                    317: *
                    318: *           Q was determined by a call to ZGEBRD with nq < k
                    319: *
                    320:             IF( LEFT ) THEN
                    321:                MI = M - 1
                    322:                NI = N
                    323:                I1 = 2
                    324:                I2 = 1
                    325:             ELSE
                    326:                MI = M
                    327:                NI = N - 1
                    328:                I1 = 1
                    329:                I2 = 2
                    330:             END IF
                    331:             CALL ZUNMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
                    332:      $                   C( I1, I2 ), LDC, WORK, LWORK, IINFO )
                    333:          END IF
                    334:       ELSE
                    335: *
                    336: *        Apply P
                    337: *
                    338:          IF( NOTRAN ) THEN
                    339:             TRANST = 'C'
                    340:          ELSE
                    341:             TRANST = 'N'
                    342:          END IF
                    343:          IF( NQ.GT.K ) THEN
                    344: *
                    345: *           P was determined by a call to ZGEBRD with nq > k
                    346: *
                    347:             CALL ZUNMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
                    348:      $                   WORK, LWORK, IINFO )
                    349:          ELSE IF( NQ.GT.1 ) THEN
                    350: *
                    351: *           P was determined by a call to ZGEBRD with nq <= k
                    352: *
                    353:             IF( LEFT ) THEN
                    354:                MI = M - 1
                    355:                NI = N
                    356:                I1 = 2
                    357:                I2 = 1
                    358:             ELSE
                    359:                MI = M
                    360:                NI = N - 1
                    361:                I1 = 1
                    362:                I2 = 2
                    363:             END IF
                    364:             CALL ZUNMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
                    365:      $                   TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
                    366:          END IF
                    367:       END IF
                    368:       WORK( 1 ) = LWKOPT
                    369:       RETURN
                    370: *
                    371: *     End of ZUNMBR
                    372: *
                    373:       END

CVSweb interface <joel.bertrand@systella.fr>