File:  [local] / rpl / lapack / lapack / zsprfs.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:37 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZSPRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSPRFS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsprfs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsprfs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsprfs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
   22: *                          FERR, BERR, WORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   31: *       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
   32: *      $                   X( LDX, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZSPRFS improves the computed solution to a system of linear
   42: *> equations when the coefficient matrix is symmetric indefinite
   43: *> and packed, and provides error bounds and backward error estimates
   44: *> for the solution.
   45: *> \endverbatim
   46: *
   47: *  Arguments:
   48: *  ==========
   49: *
   50: *> \param[in] UPLO
   51: *> \verbatim
   52: *>          UPLO is CHARACTER*1
   53: *>          = 'U':  Upper triangle of A is stored;
   54: *>          = 'L':  Lower triangle of A is stored.
   55: *> \endverbatim
   56: *>
   57: *> \param[in] N
   58: *> \verbatim
   59: *>          N is INTEGER
   60: *>          The order of the matrix A.  N >= 0.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] NRHS
   64: *> \verbatim
   65: *>          NRHS is INTEGER
   66: *>          The number of right hand sides, i.e., the number of columns
   67: *>          of the matrices B and X.  NRHS >= 0.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] AP
   71: *> \verbatim
   72: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
   73: *>          The upper or lower triangle of the symmetric matrix A, packed
   74: *>          columnwise in a linear array.  The j-th column of A is stored
   75: *>          in the array AP as follows:
   76: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   77: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] AFP
   81: *> \verbatim
   82: *>          AFP is COMPLEX*16 array, dimension (N*(N+1)/2)
   83: *>          The factored form of the matrix A.  AFP contains the block
   84: *>          diagonal matrix D and the multipliers used to obtain the
   85: *>          factor U or L from the factorization A = U*D*U**T or
   86: *>          A = L*D*L**T as computed by ZSPTRF, stored as a packed
   87: *>          triangular matrix.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] IPIV
   91: *> \verbatim
   92: *>          IPIV is INTEGER array, dimension (N)
   93: *>          Details of the interchanges and the block structure of D
   94: *>          as determined by ZSPTRF.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] B
   98: *> \verbatim
   99: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  100: *>          The right hand side matrix B.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDB
  104: *> \verbatim
  105: *>          LDB is INTEGER
  106: *>          The leading dimension of the array B.  LDB >= max(1,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[in,out] X
  110: *> \verbatim
  111: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  112: *>          On entry, the solution matrix X, as computed by ZSPTRS.
  113: *>          On exit, the improved solution matrix X.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDX
  117: *> \verbatim
  118: *>          LDX is INTEGER
  119: *>          The leading dimension of the array X.  LDX >= max(1,N).
  120: *> \endverbatim
  121: *>
  122: *> \param[out] FERR
  123: *> \verbatim
  124: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  125: *>          The estimated forward error bound for each solution vector
  126: *>          X(j) (the j-th column of the solution matrix X).
  127: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  128: *>          is an estimated upper bound for the magnitude of the largest
  129: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  130: *>          largest element in X(j).  The estimate is as reliable as
  131: *>          the estimate for RCOND, and is almost always a slight
  132: *>          overestimate of the true error.
  133: *> \endverbatim
  134: *>
  135: *> \param[out] BERR
  136: *> \verbatim
  137: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  138: *>          The componentwise relative backward error of each solution
  139: *>          vector X(j) (i.e., the smallest relative change in
  140: *>          any element of A or B that makes X(j) an exact solution).
  141: *> \endverbatim
  142: *>
  143: *> \param[out] WORK
  144: *> \verbatim
  145: *>          WORK is COMPLEX*16 array, dimension (2*N)
  146: *> \endverbatim
  147: *>
  148: *> \param[out] RWORK
  149: *> \verbatim
  150: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  151: *> \endverbatim
  152: *>
  153: *> \param[out] INFO
  154: *> \verbatim
  155: *>          INFO is INTEGER
  156: *>          = 0:  successful exit
  157: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  158: *> \endverbatim
  159: *
  160: *> \par Internal Parameters:
  161: *  =========================
  162: *>
  163: *> \verbatim
  164: *>  ITMAX is the maximum number of steps of iterative refinement.
  165: *> \endverbatim
  166: *
  167: *  Authors:
  168: *  ========
  169: *
  170: *> \author Univ. of Tennessee
  171: *> \author Univ. of California Berkeley
  172: *> \author Univ. of Colorado Denver
  173: *> \author NAG Ltd.
  174: *
  175: *> \ingroup complex16OTHERcomputational
  176: *
  177: *  =====================================================================
  178:       SUBROUTINE ZSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
  179:      $                   FERR, BERR, WORK, RWORK, INFO )
  180: *
  181: *  -- LAPACK computational routine --
  182: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  183: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  184: *
  185: *     .. Scalar Arguments ..
  186:       CHARACTER          UPLO
  187:       INTEGER            INFO, LDB, LDX, N, NRHS
  188: *     ..
  189: *     .. Array Arguments ..
  190:       INTEGER            IPIV( * )
  191:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
  192:       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
  193:      $                   X( LDX, * )
  194: *     ..
  195: *
  196: *  =====================================================================
  197: *
  198: *     .. Parameters ..
  199:       INTEGER            ITMAX
  200:       PARAMETER          ( ITMAX = 5 )
  201:       DOUBLE PRECISION   ZERO
  202:       PARAMETER          ( ZERO = 0.0D+0 )
  203:       COMPLEX*16         ONE
  204:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  205:       DOUBLE PRECISION   TWO
  206:       PARAMETER          ( TWO = 2.0D+0 )
  207:       DOUBLE PRECISION   THREE
  208:       PARAMETER          ( THREE = 3.0D+0 )
  209: *     ..
  210: *     .. Local Scalars ..
  211:       LOGICAL            UPPER
  212:       INTEGER            COUNT, I, IK, J, K, KASE, KK, NZ
  213:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  214:       COMPLEX*16         ZDUM
  215: *     ..
  216: *     .. Local Arrays ..
  217:       INTEGER            ISAVE( 3 )
  218: *     ..
  219: *     .. External Subroutines ..
  220:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZLACN2, ZSPMV, ZSPTRS
  221: *     ..
  222: *     .. Intrinsic Functions ..
  223:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  224: *     ..
  225: *     .. External Functions ..
  226:       LOGICAL            LSAME
  227:       DOUBLE PRECISION   DLAMCH
  228:       EXTERNAL           LSAME, DLAMCH
  229: *     ..
  230: *     .. Statement Functions ..
  231:       DOUBLE PRECISION   CABS1
  232: *     ..
  233: *     .. Statement Function definitions ..
  234:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  235: *     ..
  236: *     .. Executable Statements ..
  237: *
  238: *     Test the input parameters.
  239: *
  240:       INFO = 0
  241:       UPPER = LSAME( UPLO, 'U' )
  242:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  243:          INFO = -1
  244:       ELSE IF( N.LT.0 ) THEN
  245:          INFO = -2
  246:       ELSE IF( NRHS.LT.0 ) THEN
  247:          INFO = -3
  248:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  249:          INFO = -8
  250:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  251:          INFO = -10
  252:       END IF
  253:       IF( INFO.NE.0 ) THEN
  254:          CALL XERBLA( 'ZSPRFS', -INFO )
  255:          RETURN
  256:       END IF
  257: *
  258: *     Quick return if possible
  259: *
  260:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  261:          DO 10 J = 1, NRHS
  262:             FERR( J ) = ZERO
  263:             BERR( J ) = ZERO
  264:    10    CONTINUE
  265:          RETURN
  266:       END IF
  267: *
  268: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  269: *
  270:       NZ = N + 1
  271:       EPS = DLAMCH( 'Epsilon' )
  272:       SAFMIN = DLAMCH( 'Safe minimum' )
  273:       SAFE1 = NZ*SAFMIN
  274:       SAFE2 = SAFE1 / EPS
  275: *
  276: *     Do for each right hand side
  277: *
  278:       DO 140 J = 1, NRHS
  279: *
  280:          COUNT = 1
  281:          LSTRES = THREE
  282:    20    CONTINUE
  283: *
  284: *        Loop until stopping criterion is satisfied.
  285: *
  286: *        Compute residual R = B - A * X
  287: *
  288:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  289:          CALL ZSPMV( UPLO, N, -ONE, AP, X( 1, J ), 1, ONE, WORK, 1 )
  290: *
  291: *        Compute componentwise relative backward error from formula
  292: *
  293: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  294: *
  295: *        where abs(Z) is the componentwise absolute value of the matrix
  296: *        or vector Z.  If the i-th component of the denominator is less
  297: *        than SAFE2, then SAFE1 is added to the i-th components of the
  298: *        numerator and denominator before dividing.
  299: *
  300:          DO 30 I = 1, N
  301:             RWORK( I ) = CABS1( B( I, J ) )
  302:    30    CONTINUE
  303: *
  304: *        Compute abs(A)*abs(X) + abs(B).
  305: *
  306:          KK = 1
  307:          IF( UPPER ) THEN
  308:             DO 50 K = 1, N
  309:                S = ZERO
  310:                XK = CABS1( X( K, J ) )
  311:                IK = KK
  312:                DO 40 I = 1, K - 1
  313:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
  314:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
  315:                   IK = IK + 1
  316:    40          CONTINUE
  317:                RWORK( K ) = RWORK( K ) + CABS1( AP( KK+K-1 ) )*XK + S
  318:                KK = KK + K
  319:    50       CONTINUE
  320:          ELSE
  321:             DO 70 K = 1, N
  322:                S = ZERO
  323:                XK = CABS1( X( K, J ) )
  324:                RWORK( K ) = RWORK( K ) + CABS1( AP( KK ) )*XK
  325:                IK = KK + 1
  326:                DO 60 I = K + 1, N
  327:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
  328:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
  329:                   IK = IK + 1
  330:    60          CONTINUE
  331:                RWORK( K ) = RWORK( K ) + S
  332:                KK = KK + ( N-K+1 )
  333:    70       CONTINUE
  334:          END IF
  335:          S = ZERO
  336:          DO 80 I = 1, N
  337:             IF( RWORK( I ).GT.SAFE2 ) THEN
  338:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  339:             ELSE
  340:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  341:      $             ( RWORK( I )+SAFE1 ) )
  342:             END IF
  343:    80    CONTINUE
  344:          BERR( J ) = S
  345: *
  346: *        Test stopping criterion. Continue iterating if
  347: *           1) The residual BERR(J) is larger than machine epsilon, and
  348: *           2) BERR(J) decreased by at least a factor of 2 during the
  349: *              last iteration, and
  350: *           3) At most ITMAX iterations tried.
  351: *
  352:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  353:      $       COUNT.LE.ITMAX ) THEN
  354: *
  355: *           Update solution and try again.
  356: *
  357:             CALL ZSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
  358:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
  359:             LSTRES = BERR( J )
  360:             COUNT = COUNT + 1
  361:             GO TO 20
  362:          END IF
  363: *
  364: *        Bound error from formula
  365: *
  366: *        norm(X - XTRUE) / norm(X) .le. FERR =
  367: *        norm( abs(inv(A))*
  368: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  369: *
  370: *        where
  371: *          norm(Z) is the magnitude of the largest component of Z
  372: *          inv(A) is the inverse of A
  373: *          abs(Z) is the componentwise absolute value of the matrix or
  374: *             vector Z
  375: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  376: *          EPS is machine epsilon
  377: *
  378: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  379: *        is incremented by SAFE1 if the i-th component of
  380: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  381: *
  382: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  383: *           inv(A) * diag(W),
  384: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  385: *
  386:          DO 90 I = 1, N
  387:             IF( RWORK( I ).GT.SAFE2 ) THEN
  388:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  389:             ELSE
  390:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  391:      $                      SAFE1
  392:             END IF
  393:    90    CONTINUE
  394: *
  395:          KASE = 0
  396:   100    CONTINUE
  397:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  398:          IF( KASE.NE.0 ) THEN
  399:             IF( KASE.EQ.1 ) THEN
  400: *
  401: *              Multiply by diag(W)*inv(A**T).
  402: *
  403:                CALL ZSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
  404:                DO 110 I = 1, N
  405:                   WORK( I ) = RWORK( I )*WORK( I )
  406:   110          CONTINUE
  407:             ELSE IF( KASE.EQ.2 ) THEN
  408: *
  409: *              Multiply by inv(A)*diag(W).
  410: *
  411:                DO 120 I = 1, N
  412:                   WORK( I ) = RWORK( I )*WORK( I )
  413:   120          CONTINUE
  414:                CALL ZSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
  415:             END IF
  416:             GO TO 100
  417:          END IF
  418: *
  419: *        Normalize error.
  420: *
  421:          LSTRES = ZERO
  422:          DO 130 I = 1, N
  423:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  424:   130    CONTINUE
  425:          IF( LSTRES.NE.ZERO )
  426:      $      FERR( J ) = FERR( J ) / LSTRES
  427: *
  428:   140 CONTINUE
  429: *
  430:       RETURN
  431: *
  432: *     End of ZSPRFS
  433: *
  434:       END

CVSweb interface <joel.bertrand@systella.fr>