Annotation of rpl/lapack/lapack/zsprfs.f, revision 1.18

1.9       bertrand    1: *> \brief \b ZSPRFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZSPRFS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsprfs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsprfs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsprfs.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
                     22: *                          FERR, BERR, WORK, RWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, LDB, LDX, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IPIV( * )
                     30: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     31: *       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
                     32: *      $                   X( LDX, * )
                     33: *       ..
1.15      bertrand   34: *
1.9       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> ZSPRFS improves the computed solution to a system of linear
                     42: *> equations when the coefficient matrix is symmetric indefinite
                     43: *> and packed, and provides error bounds and backward error estimates
                     44: *> for the solution.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] UPLO
                     51: *> \verbatim
                     52: *>          UPLO is CHARACTER*1
                     53: *>          = 'U':  Upper triangle of A is stored;
                     54: *>          = 'L':  Lower triangle of A is stored.
                     55: *> \endverbatim
                     56: *>
                     57: *> \param[in] N
                     58: *> \verbatim
                     59: *>          N is INTEGER
                     60: *>          The order of the matrix A.  N >= 0.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in] NRHS
                     64: *> \verbatim
                     65: *>          NRHS is INTEGER
                     66: *>          The number of right hand sides, i.e., the number of columns
                     67: *>          of the matrices B and X.  NRHS >= 0.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] AP
                     71: *> \verbatim
                     72: *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     73: *>          The upper or lower triangle of the symmetric matrix A, packed
                     74: *>          columnwise in a linear array.  The j-th column of A is stored
                     75: *>          in the array AP as follows:
                     76: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     77: *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] AFP
                     81: *> \verbatim
                     82: *>          AFP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     83: *>          The factored form of the matrix A.  AFP contains the block
                     84: *>          diagonal matrix D and the multipliers used to obtain the
                     85: *>          factor U or L from the factorization A = U*D*U**T or
                     86: *>          A = L*D*L**T as computed by ZSPTRF, stored as a packed
                     87: *>          triangular matrix.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in] IPIV
                     91: *> \verbatim
                     92: *>          IPIV is INTEGER array, dimension (N)
                     93: *>          Details of the interchanges and the block structure of D
                     94: *>          as determined by ZSPTRF.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] B
                     98: *> \verbatim
                     99: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    100: *>          The right hand side matrix B.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDB
                    104: *> \verbatim
                    105: *>          LDB is INTEGER
                    106: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in,out] X
                    110: *> \verbatim
                    111: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    112: *>          On entry, the solution matrix X, as computed by ZSPTRS.
                    113: *>          On exit, the improved solution matrix X.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDX
                    117: *> \verbatim
                    118: *>          LDX is INTEGER
                    119: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[out] FERR
                    123: *> \verbatim
                    124: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    125: *>          The estimated forward error bound for each solution vector
                    126: *>          X(j) (the j-th column of the solution matrix X).
                    127: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    128: *>          is an estimated upper bound for the magnitude of the largest
                    129: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    130: *>          largest element in X(j).  The estimate is as reliable as
                    131: *>          the estimate for RCOND, and is almost always a slight
                    132: *>          overestimate of the true error.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[out] BERR
                    136: *> \verbatim
                    137: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    138: *>          The componentwise relative backward error of each solution
                    139: *>          vector X(j) (i.e., the smallest relative change in
                    140: *>          any element of A or B that makes X(j) an exact solution).
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[out] WORK
                    144: *> \verbatim
                    145: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[out] RWORK
                    149: *> \verbatim
                    150: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] INFO
                    154: *> \verbatim
                    155: *>          INFO is INTEGER
                    156: *>          = 0:  successful exit
                    157: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    158: *> \endverbatim
                    159: *
                    160: *> \par Internal Parameters:
                    161: *  =========================
                    162: *>
                    163: *> \verbatim
                    164: *>  ITMAX is the maximum number of steps of iterative refinement.
                    165: *> \endverbatim
                    166: *
                    167: *  Authors:
                    168: *  ========
                    169: *
1.15      bertrand  170: *> \author Univ. of Tennessee
                    171: *> \author Univ. of California Berkeley
                    172: *> \author Univ. of Colorado Denver
                    173: *> \author NAG Ltd.
1.9       bertrand  174: *
                    175: *> \ingroup complex16OTHERcomputational
                    176: *
                    177: *  =====================================================================
1.1       bertrand  178:       SUBROUTINE ZSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX,
                    179:      $                   FERR, BERR, WORK, RWORK, INFO )
                    180: *
1.18    ! bertrand  181: *  -- LAPACK computational routine --
1.1       bertrand  182: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    183: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    184: *
                    185: *     .. Scalar Arguments ..
                    186:       CHARACTER          UPLO
                    187:       INTEGER            INFO, LDB, LDX, N, NRHS
                    188: *     ..
                    189: *     .. Array Arguments ..
                    190:       INTEGER            IPIV( * )
                    191:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                    192:       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
                    193:      $                   X( LDX, * )
                    194: *     ..
                    195: *
                    196: *  =====================================================================
                    197: *
                    198: *     .. Parameters ..
                    199:       INTEGER            ITMAX
                    200:       PARAMETER          ( ITMAX = 5 )
                    201:       DOUBLE PRECISION   ZERO
                    202:       PARAMETER          ( ZERO = 0.0D+0 )
                    203:       COMPLEX*16         ONE
                    204:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    205:       DOUBLE PRECISION   TWO
                    206:       PARAMETER          ( TWO = 2.0D+0 )
                    207:       DOUBLE PRECISION   THREE
                    208:       PARAMETER          ( THREE = 3.0D+0 )
                    209: *     ..
                    210: *     .. Local Scalars ..
                    211:       LOGICAL            UPPER
                    212:       INTEGER            COUNT, I, IK, J, K, KASE, KK, NZ
                    213:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    214:       COMPLEX*16         ZDUM
                    215: *     ..
                    216: *     .. Local Arrays ..
                    217:       INTEGER            ISAVE( 3 )
                    218: *     ..
                    219: *     .. External Subroutines ..
                    220:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZLACN2, ZSPMV, ZSPTRS
                    221: *     ..
                    222: *     .. Intrinsic Functions ..
                    223:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    224: *     ..
                    225: *     .. External Functions ..
                    226:       LOGICAL            LSAME
                    227:       DOUBLE PRECISION   DLAMCH
                    228:       EXTERNAL           LSAME, DLAMCH
                    229: *     ..
                    230: *     .. Statement Functions ..
                    231:       DOUBLE PRECISION   CABS1
                    232: *     ..
                    233: *     .. Statement Function definitions ..
                    234:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    235: *     ..
                    236: *     .. Executable Statements ..
                    237: *
                    238: *     Test the input parameters.
                    239: *
                    240:       INFO = 0
                    241:       UPPER = LSAME( UPLO, 'U' )
                    242:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    243:          INFO = -1
                    244:       ELSE IF( N.LT.0 ) THEN
                    245:          INFO = -2
                    246:       ELSE IF( NRHS.LT.0 ) THEN
                    247:          INFO = -3
                    248:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    249:          INFO = -8
                    250:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    251:          INFO = -10
                    252:       END IF
                    253:       IF( INFO.NE.0 ) THEN
                    254:          CALL XERBLA( 'ZSPRFS', -INFO )
                    255:          RETURN
                    256:       END IF
                    257: *
                    258: *     Quick return if possible
                    259: *
                    260:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    261:          DO 10 J = 1, NRHS
                    262:             FERR( J ) = ZERO
                    263:             BERR( J ) = ZERO
                    264:    10    CONTINUE
                    265:          RETURN
                    266:       END IF
                    267: *
                    268: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    269: *
                    270:       NZ = N + 1
                    271:       EPS = DLAMCH( 'Epsilon' )
                    272:       SAFMIN = DLAMCH( 'Safe minimum' )
                    273:       SAFE1 = NZ*SAFMIN
                    274:       SAFE2 = SAFE1 / EPS
                    275: *
                    276: *     Do for each right hand side
                    277: *
                    278:       DO 140 J = 1, NRHS
                    279: *
                    280:          COUNT = 1
                    281:          LSTRES = THREE
                    282:    20    CONTINUE
                    283: *
                    284: *        Loop until stopping criterion is satisfied.
                    285: *
                    286: *        Compute residual R = B - A * X
                    287: *
                    288:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    289:          CALL ZSPMV( UPLO, N, -ONE, AP, X( 1, J ), 1, ONE, WORK, 1 )
                    290: *
                    291: *        Compute componentwise relative backward error from formula
                    292: *
                    293: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    294: *
                    295: *        where abs(Z) is the componentwise absolute value of the matrix
                    296: *        or vector Z.  If the i-th component of the denominator is less
                    297: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    298: *        numerator and denominator before dividing.
                    299: *
                    300:          DO 30 I = 1, N
                    301:             RWORK( I ) = CABS1( B( I, J ) )
                    302:    30    CONTINUE
                    303: *
                    304: *        Compute abs(A)*abs(X) + abs(B).
                    305: *
                    306:          KK = 1
                    307:          IF( UPPER ) THEN
                    308:             DO 50 K = 1, N
                    309:                S = ZERO
                    310:                XK = CABS1( X( K, J ) )
                    311:                IK = KK
                    312:                DO 40 I = 1, K - 1
                    313:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
                    314:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
                    315:                   IK = IK + 1
                    316:    40          CONTINUE
                    317:                RWORK( K ) = RWORK( K ) + CABS1( AP( KK+K-1 ) )*XK + S
                    318:                KK = KK + K
                    319:    50       CONTINUE
                    320:          ELSE
                    321:             DO 70 K = 1, N
                    322:                S = ZERO
                    323:                XK = CABS1( X( K, J ) )
                    324:                RWORK( K ) = RWORK( K ) + CABS1( AP( KK ) )*XK
                    325:                IK = KK + 1
                    326:                DO 60 I = K + 1, N
                    327:                   RWORK( I ) = RWORK( I ) + CABS1( AP( IK ) )*XK
                    328:                   S = S + CABS1( AP( IK ) )*CABS1( X( I, J ) )
                    329:                   IK = IK + 1
                    330:    60          CONTINUE
                    331:                RWORK( K ) = RWORK( K ) + S
                    332:                KK = KK + ( N-K+1 )
                    333:    70       CONTINUE
                    334:          END IF
                    335:          S = ZERO
                    336:          DO 80 I = 1, N
                    337:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    338:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    339:             ELSE
                    340:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    341:      $             ( RWORK( I )+SAFE1 ) )
                    342:             END IF
                    343:    80    CONTINUE
                    344:          BERR( J ) = S
                    345: *
                    346: *        Test stopping criterion. Continue iterating if
                    347: *           1) The residual BERR(J) is larger than machine epsilon, and
                    348: *           2) BERR(J) decreased by at least a factor of 2 during the
                    349: *              last iteration, and
                    350: *           3) At most ITMAX iterations tried.
                    351: *
                    352:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    353:      $       COUNT.LE.ITMAX ) THEN
                    354: *
                    355: *           Update solution and try again.
                    356: *
                    357:             CALL ZSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
                    358:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
                    359:             LSTRES = BERR( J )
                    360:             COUNT = COUNT + 1
                    361:             GO TO 20
                    362:          END IF
                    363: *
                    364: *        Bound error from formula
                    365: *
                    366: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    367: *        norm( abs(inv(A))*
                    368: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    369: *
                    370: *        where
                    371: *          norm(Z) is the magnitude of the largest component of Z
                    372: *          inv(A) is the inverse of A
                    373: *          abs(Z) is the componentwise absolute value of the matrix or
                    374: *             vector Z
                    375: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    376: *          EPS is machine epsilon
                    377: *
                    378: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    379: *        is incremented by SAFE1 if the i-th component of
                    380: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    381: *
                    382: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    383: *           inv(A) * diag(W),
                    384: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    385: *
                    386:          DO 90 I = 1, N
                    387:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    388:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    389:             ELSE
                    390:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    391:      $                      SAFE1
                    392:             END IF
                    393:    90    CONTINUE
                    394: *
                    395:          KASE = 0
                    396:   100    CONTINUE
                    397:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    398:          IF( KASE.NE.0 ) THEN
                    399:             IF( KASE.EQ.1 ) THEN
                    400: *
1.8       bertrand  401: *              Multiply by diag(W)*inv(A**T).
1.1       bertrand  402: *
                    403:                CALL ZSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
                    404:                DO 110 I = 1, N
                    405:                   WORK( I ) = RWORK( I )*WORK( I )
                    406:   110          CONTINUE
                    407:             ELSE IF( KASE.EQ.2 ) THEN
                    408: *
                    409: *              Multiply by inv(A)*diag(W).
                    410: *
                    411:                DO 120 I = 1, N
                    412:                   WORK( I ) = RWORK( I )*WORK( I )
                    413:   120          CONTINUE
                    414:                CALL ZSPTRS( UPLO, N, 1, AFP, IPIV, WORK, N, INFO )
                    415:             END IF
                    416:             GO TO 100
                    417:          END IF
                    418: *
                    419: *        Normalize error.
                    420: *
                    421:          LSTRES = ZERO
                    422:          DO 130 I = 1, N
                    423:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    424:   130    CONTINUE
                    425:          IF( LSTRES.NE.ZERO )
                    426:      $      FERR( J ) = FERR( J ) / LSTRES
                    427: *
                    428:   140 CONTINUE
                    429: *
                    430:       RETURN
                    431: *
                    432: *     End of ZSPRFS
                    433: *
                    434:       END

CVSweb interface <joel.bertrand@systella.fr>