File:  [local] / rpl / lapack / lapack / zpbrfs.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:27:14 2016 UTC (7 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD

Mise à jour de lapack.

    1: *> \brief \b ZPBRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZPBRFS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbrfs.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbrfs.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbrfs.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
   22: *                          LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   30: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   31: *      $                   WORK( * ), X( LDX, * )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZPBRFS improves the computed solution to a system of linear
   41: *> equations when the coefficient matrix is Hermitian positive definite
   42: *> and banded, and provides error bounds and backward error estimates
   43: *> for the solution.
   44: *> \endverbatim
   45: *
   46: *  Arguments:
   47: *  ==========
   48: *
   49: *> \param[in] UPLO
   50: *> \verbatim
   51: *>          UPLO is CHARACTER*1
   52: *>          = 'U':  Upper triangle of A is stored;
   53: *>          = 'L':  Lower triangle of A is stored.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The order of the matrix A.  N >= 0.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] KD
   63: *> \verbatim
   64: *>          KD is INTEGER
   65: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   66: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] NRHS
   70: *> \verbatim
   71: *>          NRHS is INTEGER
   72: *>          The number of right hand sides, i.e., the number of columns
   73: *>          of the matrices B and X.  NRHS >= 0.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] AB
   77: *> \verbatim
   78: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
   79: *>          The upper or lower triangle of the Hermitian band matrix A,
   80: *>          stored in the first KD+1 rows of the array.  The j-th column
   81: *>          of A is stored in the j-th column of the array AB as follows:
   82: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   83: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   84: *> \endverbatim
   85: *>
   86: *> \param[in] LDAB
   87: *> \verbatim
   88: *>          LDAB is INTEGER
   89: *>          The leading dimension of the array AB.  LDAB >= KD+1.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] AFB
   93: *> \verbatim
   94: *>          AFB is COMPLEX*16 array, dimension (LDAFB,N)
   95: *>          The triangular factor U or L from the Cholesky factorization
   96: *>          A = U**H*U or A = L*L**H of the band matrix A as computed by
   97: *>          ZPBTRF, in the same storage format as A (see AB).
   98: *> \endverbatim
   99: *>
  100: *> \param[in] LDAFB
  101: *> \verbatim
  102: *>          LDAFB is INTEGER
  103: *>          The leading dimension of the array AFB.  LDAFB >= KD+1.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] B
  107: *> \verbatim
  108: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  109: *>          The right hand side matrix B.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDB
  113: *> \verbatim
  114: *>          LDB is INTEGER
  115: *>          The leading dimension of the array B.  LDB >= max(1,N).
  116: *> \endverbatim
  117: *>
  118: *> \param[in,out] X
  119: *> \verbatim
  120: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  121: *>          On entry, the solution matrix X, as computed by ZPBTRS.
  122: *>          On exit, the improved solution matrix X.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LDX
  126: *> \verbatim
  127: *>          LDX is INTEGER
  128: *>          The leading dimension of the array X.  LDX >= max(1,N).
  129: *> \endverbatim
  130: *>
  131: *> \param[out] FERR
  132: *> \verbatim
  133: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  134: *>          The estimated forward error bound for each solution vector
  135: *>          X(j) (the j-th column of the solution matrix X).
  136: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  137: *>          is an estimated upper bound for the magnitude of the largest
  138: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  139: *>          largest element in X(j).  The estimate is as reliable as
  140: *>          the estimate for RCOND, and is almost always a slight
  141: *>          overestimate of the true error.
  142: *> \endverbatim
  143: *>
  144: *> \param[out] BERR
  145: *> \verbatim
  146: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  147: *>          The componentwise relative backward error of each solution
  148: *>          vector X(j) (i.e., the smallest relative change in
  149: *>          any element of A or B that makes X(j) an exact solution).
  150: *> \endverbatim
  151: *>
  152: *> \param[out] WORK
  153: *> \verbatim
  154: *>          WORK is COMPLEX*16 array, dimension (2*N)
  155: *> \endverbatim
  156: *>
  157: *> \param[out] RWORK
  158: *> \verbatim
  159: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  160: *> \endverbatim
  161: *>
  162: *> \param[out] INFO
  163: *> \verbatim
  164: *>          INFO is INTEGER
  165: *>          = 0:  successful exit
  166: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  167: *> \endverbatim
  168: *
  169: *> \par Internal Parameters:
  170: *  =========================
  171: *>
  172: *> \verbatim
  173: *>  ITMAX is the maximum number of steps of iterative refinement.
  174: *> \endverbatim
  175: *
  176: *  Authors:
  177: *  ========
  178: *
  179: *> \author Univ. of Tennessee 
  180: *> \author Univ. of California Berkeley 
  181: *> \author Univ. of Colorado Denver 
  182: *> \author NAG Ltd. 
  183: *
  184: *> \date June 2016
  185: *
  186: *> \ingroup complex16OTHERcomputational
  187: *
  188: *  =====================================================================
  189:       SUBROUTINE ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
  190:      $                   LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
  191: *
  192: *  -- LAPACK computational routine (version 3.6.1) --
  193: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  194: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  195: *     June 2016
  196: *
  197: *     .. Scalar Arguments ..
  198:       CHARACTER          UPLO
  199:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
  200: *     ..
  201: *     .. Array Arguments ..
  202:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
  203:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  204:      $                   WORK( * ), X( LDX, * )
  205: *     ..
  206: *
  207: *  =====================================================================
  208: *
  209: *     .. Parameters ..
  210:       INTEGER            ITMAX
  211:       PARAMETER          ( ITMAX = 5 )
  212:       DOUBLE PRECISION   ZERO
  213:       PARAMETER          ( ZERO = 0.0D+0 )
  214:       COMPLEX*16         ONE
  215:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  216:       DOUBLE PRECISION   TWO
  217:       PARAMETER          ( TWO = 2.0D+0 )
  218:       DOUBLE PRECISION   THREE
  219:       PARAMETER          ( THREE = 3.0D+0 )
  220: *     ..
  221: *     .. Local Scalars ..
  222:       LOGICAL            UPPER
  223:       INTEGER            COUNT, I, J, K, KASE, L, NZ
  224:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  225:       COMPLEX*16         ZDUM
  226: *     ..
  227: *     .. Local Arrays ..
  228:       INTEGER            ISAVE( 3 )
  229: *     ..
  230: *     .. External Subroutines ..
  231:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZHBMV, ZLACN2, ZPBTRS
  232: *     ..
  233: *     .. Intrinsic Functions ..
  234:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
  235: *     ..
  236: *     .. External Functions ..
  237:       LOGICAL            LSAME
  238:       DOUBLE PRECISION   DLAMCH
  239:       EXTERNAL           LSAME, DLAMCH
  240: *     ..
  241: *     .. Statement Functions ..
  242:       DOUBLE PRECISION   CABS1
  243: *     ..
  244: *     .. Statement Function definitions ..
  245:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  246: *     ..
  247: *     .. Executable Statements ..
  248: *
  249: *     Test the input parameters.
  250: *
  251:       INFO = 0
  252:       UPPER = LSAME( UPLO, 'U' )
  253:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  254:          INFO = -1
  255:       ELSE IF( N.LT.0 ) THEN
  256:          INFO = -2
  257:       ELSE IF( KD.LT.0 ) THEN
  258:          INFO = -3
  259:       ELSE IF( NRHS.LT.0 ) THEN
  260:          INFO = -4
  261:       ELSE IF( LDAB.LT.KD+1 ) THEN
  262:          INFO = -6
  263:       ELSE IF( LDAFB.LT.KD+1 ) THEN
  264:          INFO = -8
  265:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  266:          INFO = -10
  267:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  268:          INFO = -12
  269:       END IF
  270:       IF( INFO.NE.0 ) THEN
  271:          CALL XERBLA( 'ZPBRFS', -INFO )
  272:          RETURN
  273:       END IF
  274: *
  275: *     Quick return if possible
  276: *
  277:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  278:          DO 10 J = 1, NRHS
  279:             FERR( J ) = ZERO
  280:             BERR( J ) = ZERO
  281:    10    CONTINUE
  282:          RETURN
  283:       END IF
  284: *
  285: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  286: *
  287:       NZ = MIN( N+1, 2*KD+2 )
  288:       EPS = DLAMCH( 'Epsilon' )
  289:       SAFMIN = DLAMCH( 'Safe minimum' )
  290:       SAFE1 = NZ*SAFMIN
  291:       SAFE2 = SAFE1 / EPS
  292: *
  293: *     Do for each right hand side
  294: *
  295:       DO 140 J = 1, NRHS
  296: *
  297:          COUNT = 1
  298:          LSTRES = THREE
  299:    20    CONTINUE
  300: *
  301: *        Loop until stopping criterion is satisfied.
  302: *
  303: *        Compute residual R = B - A * X
  304: *
  305:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  306:          CALL ZHBMV( UPLO, N, KD, -ONE, AB, LDAB, X( 1, J ), 1, ONE,
  307:      $               WORK, 1 )
  308: *
  309: *        Compute componentwise relative backward error from formula
  310: *
  311: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
  312: *
  313: *        where abs(Z) is the componentwise absolute value of the matrix
  314: *        or vector Z.  If the i-th component of the denominator is less
  315: *        than SAFE2, then SAFE1 is added to the i-th components of the
  316: *        numerator and denominator before dividing.
  317: *
  318:          DO 30 I = 1, N
  319:             RWORK( I ) = CABS1( B( I, J ) )
  320:    30    CONTINUE
  321: *
  322: *        Compute abs(A)*abs(X) + abs(B).
  323: *
  324:          IF( UPPER ) THEN
  325:             DO 50 K = 1, N
  326:                S = ZERO
  327:                XK = CABS1( X( K, J ) )
  328:                L = KD + 1 - K
  329:                DO 40 I = MAX( 1, K-KD ), K - 1
  330:                   RWORK( I ) = RWORK( I ) + CABS1( AB( L+I, K ) )*XK
  331:                   S = S + CABS1( AB( L+I, K ) )*CABS1( X( I, J ) )
  332:    40          CONTINUE
  333:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AB( KD+1, K ) ) )*
  334:      $                      XK + S
  335:    50       CONTINUE
  336:          ELSE
  337:             DO 70 K = 1, N
  338:                S = ZERO
  339:                XK = CABS1( X( K, J ) )
  340:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AB( 1, K ) ) )*XK
  341:                L = 1 - K
  342:                DO 60 I = K + 1, MIN( N, K+KD )
  343:                   RWORK( I ) = RWORK( I ) + CABS1( AB( L+I, K ) )*XK
  344:                   S = S + CABS1( AB( L+I, K ) )*CABS1( X( I, J ) )
  345:    60          CONTINUE
  346:                RWORK( K ) = RWORK( K ) + S
  347:    70       CONTINUE
  348:          END IF
  349:          S = ZERO
  350:          DO 80 I = 1, N
  351:             IF( RWORK( I ).GT.SAFE2 ) THEN
  352:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  353:             ELSE
  354:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  355:      $             ( RWORK( I )+SAFE1 ) )
  356:             END IF
  357:    80    CONTINUE
  358:          BERR( J ) = S
  359: *
  360: *        Test stopping criterion. Continue iterating if
  361: *           1) The residual BERR(J) is larger than machine epsilon, and
  362: *           2) BERR(J) decreased by at least a factor of 2 during the
  363: *              last iteration, and
  364: *           3) At most ITMAX iterations tried.
  365: *
  366:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  367:      $       COUNT.LE.ITMAX ) THEN
  368: *
  369: *           Update solution and try again.
  370: *
  371:             CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
  372:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
  373:             LSTRES = BERR( J )
  374:             COUNT = COUNT + 1
  375:             GO TO 20
  376:          END IF
  377: *
  378: *        Bound error from formula
  379: *
  380: *        norm(X - XTRUE) / norm(X) .le. FERR =
  381: *        norm( abs(inv(A))*
  382: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
  383: *
  384: *        where
  385: *          norm(Z) is the magnitude of the largest component of Z
  386: *          inv(A) is the inverse of A
  387: *          abs(Z) is the componentwise absolute value of the matrix or
  388: *             vector Z
  389: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  390: *          EPS is machine epsilon
  391: *
  392: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
  393: *        is incremented by SAFE1 if the i-th component of
  394: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
  395: *
  396: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  397: *           inv(A) * diag(W),
  398: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
  399: *
  400:          DO 90 I = 1, N
  401:             IF( RWORK( I ).GT.SAFE2 ) THEN
  402:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  403:             ELSE
  404:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  405:      $                      SAFE1
  406:             END IF
  407:    90    CONTINUE
  408: *
  409:          KASE = 0
  410:   100    CONTINUE
  411:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  412:          IF( KASE.NE.0 ) THEN
  413:             IF( KASE.EQ.1 ) THEN
  414: *
  415: *              Multiply by diag(W)*inv(A**H).
  416: *
  417:                CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
  418:                DO 110 I = 1, N
  419:                   WORK( I ) = RWORK( I )*WORK( I )
  420:   110          CONTINUE
  421:             ELSE IF( KASE.EQ.2 ) THEN
  422: *
  423: *              Multiply by inv(A)*diag(W).
  424: *
  425:                DO 120 I = 1, N
  426:                   WORK( I ) = RWORK( I )*WORK( I )
  427:   120          CONTINUE
  428:                CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
  429:             END IF
  430:             GO TO 100
  431:          END IF
  432: *
  433: *        Normalize error.
  434: *
  435:          LSTRES = ZERO
  436:          DO 130 I = 1, N
  437:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  438:   130    CONTINUE
  439:          IF( LSTRES.NE.ZERO )
  440:      $      FERR( J ) = FERR( J ) / LSTRES
  441: *
  442:   140 CONTINUE
  443: *
  444:       RETURN
  445: *
  446: *     End of ZPBRFS
  447: *
  448:       END

CVSweb interface <joel.bertrand@systella.fr>