Annotation of rpl/lapack/lapack/zpbrfs.f, revision 1.14

1.9       bertrand    1: *> \brief \b ZPBRFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZPBRFS + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpbrfs.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpbrfs.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpbrfs.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
                     22: *                          LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     30: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     31: *      $                   WORK( * ), X( LDX, * )
                     32: *       ..
                     33: *  
                     34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> ZPBRFS improves the computed solution to a system of linear
                     41: *> equations when the coefficient matrix is Hermitian positive definite
                     42: *> and banded, and provides error bounds and backward error estimates
                     43: *> for the solution.
                     44: *> \endverbatim
                     45: *
                     46: *  Arguments:
                     47: *  ==========
                     48: *
                     49: *> \param[in] UPLO
                     50: *> \verbatim
                     51: *>          UPLO is CHARACTER*1
                     52: *>          = 'U':  Upper triangle of A is stored;
                     53: *>          = 'L':  Lower triangle of A is stored.
                     54: *> \endverbatim
                     55: *>
                     56: *> \param[in] N
                     57: *> \verbatim
                     58: *>          N is INTEGER
                     59: *>          The order of the matrix A.  N >= 0.
                     60: *> \endverbatim
                     61: *>
                     62: *> \param[in] KD
                     63: *> \verbatim
                     64: *>          KD is INTEGER
                     65: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     66: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] NRHS
                     70: *> \verbatim
                     71: *>          NRHS is INTEGER
                     72: *>          The number of right hand sides, i.e., the number of columns
                     73: *>          of the matrices B and X.  NRHS >= 0.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] AB
                     77: *> \verbatim
1.14    ! bertrand   78: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
1.9       bertrand   79: *>          The upper or lower triangle of the Hermitian band matrix A,
                     80: *>          stored in the first KD+1 rows of the array.  The j-th column
                     81: *>          of A is stored in the j-th column of the array AB as follows:
                     82: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     83: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] LDAB
                     87: *> \verbatim
                     88: *>          LDAB is INTEGER
                     89: *>          The leading dimension of the array AB.  LDAB >= KD+1.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] AFB
                     93: *> \verbatim
                     94: *>          AFB is COMPLEX*16 array, dimension (LDAFB,N)
                     95: *>          The triangular factor U or L from the Cholesky factorization
                     96: *>          A = U**H*U or A = L*L**H of the band matrix A as computed by
                     97: *>          ZPBTRF, in the same storage format as A (see AB).
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] LDAFB
                    101: *> \verbatim
                    102: *>          LDAFB is INTEGER
                    103: *>          The leading dimension of the array AFB.  LDAFB >= KD+1.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] B
                    107: *> \verbatim
                    108: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    109: *>          The right hand side matrix B.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] LDB
                    113: *> \verbatim
                    114: *>          LDB is INTEGER
                    115: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in,out] X
                    119: *> \verbatim
                    120: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    121: *>          On entry, the solution matrix X, as computed by ZPBTRS.
                    122: *>          On exit, the improved solution matrix X.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] LDX
                    126: *> \verbatim
                    127: *>          LDX is INTEGER
                    128: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] FERR
                    132: *> \verbatim
                    133: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    134: *>          The estimated forward error bound for each solution vector
                    135: *>          X(j) (the j-th column of the solution matrix X).
                    136: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    137: *>          is an estimated upper bound for the magnitude of the largest
                    138: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    139: *>          largest element in X(j).  The estimate is as reliable as
                    140: *>          the estimate for RCOND, and is almost always a slight
                    141: *>          overestimate of the true error.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[out] BERR
                    145: *> \verbatim
                    146: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    147: *>          The componentwise relative backward error of each solution
                    148: *>          vector X(j) (i.e., the smallest relative change in
                    149: *>          any element of A or B that makes X(j) an exact solution).
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[out] WORK
                    153: *> \verbatim
                    154: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[out] RWORK
                    158: *> \verbatim
                    159: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[out] INFO
                    163: *> \verbatim
                    164: *>          INFO is INTEGER
                    165: *>          = 0:  successful exit
                    166: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    167: *> \endverbatim
                    168: *
                    169: *> \par Internal Parameters:
                    170: *  =========================
                    171: *>
                    172: *> \verbatim
                    173: *>  ITMAX is the maximum number of steps of iterative refinement.
                    174: *> \endverbatim
                    175: *
                    176: *  Authors:
                    177: *  ========
                    178: *
                    179: *> \author Univ. of Tennessee 
                    180: *> \author Univ. of California Berkeley 
                    181: *> \author Univ. of Colorado Denver 
                    182: *> \author NAG Ltd. 
                    183: *
1.14    ! bertrand  184: *> \date June 2016
1.9       bertrand  185: *
                    186: *> \ingroup complex16OTHERcomputational
                    187: *
                    188: *  =====================================================================
1.1       bertrand  189:       SUBROUTINE ZPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
                    190:      $                   LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
                    191: *
1.14    ! bertrand  192: *  -- LAPACK computational routine (version 3.6.1) --
1.1       bertrand  193: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    194: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.14    ! bertrand  195: *     June 2016
1.1       bertrand  196: *
                    197: *     .. Scalar Arguments ..
                    198:       CHARACTER          UPLO
                    199:       INTEGER            INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
                    200: *     ..
                    201: *     .. Array Arguments ..
                    202:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                    203:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    204:      $                   WORK( * ), X( LDX, * )
                    205: *     ..
                    206: *
                    207: *  =====================================================================
                    208: *
                    209: *     .. Parameters ..
                    210:       INTEGER            ITMAX
                    211:       PARAMETER          ( ITMAX = 5 )
                    212:       DOUBLE PRECISION   ZERO
                    213:       PARAMETER          ( ZERO = 0.0D+0 )
                    214:       COMPLEX*16         ONE
                    215:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    216:       DOUBLE PRECISION   TWO
                    217:       PARAMETER          ( TWO = 2.0D+0 )
                    218:       DOUBLE PRECISION   THREE
                    219:       PARAMETER          ( THREE = 3.0D+0 )
                    220: *     ..
                    221: *     .. Local Scalars ..
                    222:       LOGICAL            UPPER
                    223:       INTEGER            COUNT, I, J, K, KASE, L, NZ
                    224:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    225:       COMPLEX*16         ZDUM
                    226: *     ..
                    227: *     .. Local Arrays ..
                    228:       INTEGER            ISAVE( 3 )
                    229: *     ..
                    230: *     .. External Subroutines ..
                    231:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZHBMV, ZLACN2, ZPBTRS
                    232: *     ..
                    233: *     .. Intrinsic Functions ..
                    234:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
                    235: *     ..
                    236: *     .. External Functions ..
                    237:       LOGICAL            LSAME
                    238:       DOUBLE PRECISION   DLAMCH
                    239:       EXTERNAL           LSAME, DLAMCH
                    240: *     ..
                    241: *     .. Statement Functions ..
                    242:       DOUBLE PRECISION   CABS1
                    243: *     ..
                    244: *     .. Statement Function definitions ..
                    245:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    246: *     ..
                    247: *     .. Executable Statements ..
                    248: *
                    249: *     Test the input parameters.
                    250: *
                    251:       INFO = 0
                    252:       UPPER = LSAME( UPLO, 'U' )
                    253:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    254:          INFO = -1
                    255:       ELSE IF( N.LT.0 ) THEN
                    256:          INFO = -2
                    257:       ELSE IF( KD.LT.0 ) THEN
                    258:          INFO = -3
                    259:       ELSE IF( NRHS.LT.0 ) THEN
                    260:          INFO = -4
                    261:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    262:          INFO = -6
                    263:       ELSE IF( LDAFB.LT.KD+1 ) THEN
                    264:          INFO = -8
                    265:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    266:          INFO = -10
                    267:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    268:          INFO = -12
                    269:       END IF
                    270:       IF( INFO.NE.0 ) THEN
                    271:          CALL XERBLA( 'ZPBRFS', -INFO )
                    272:          RETURN
                    273:       END IF
                    274: *
                    275: *     Quick return if possible
                    276: *
                    277:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    278:          DO 10 J = 1, NRHS
                    279:             FERR( J ) = ZERO
                    280:             BERR( J ) = ZERO
                    281:    10    CONTINUE
                    282:          RETURN
                    283:       END IF
                    284: *
                    285: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    286: *
                    287:       NZ = MIN( N+1, 2*KD+2 )
                    288:       EPS = DLAMCH( 'Epsilon' )
                    289:       SAFMIN = DLAMCH( 'Safe minimum' )
                    290:       SAFE1 = NZ*SAFMIN
                    291:       SAFE2 = SAFE1 / EPS
                    292: *
                    293: *     Do for each right hand side
                    294: *
                    295:       DO 140 J = 1, NRHS
                    296: *
                    297:          COUNT = 1
                    298:          LSTRES = THREE
                    299:    20    CONTINUE
                    300: *
                    301: *        Loop until stopping criterion is satisfied.
                    302: *
                    303: *        Compute residual R = B - A * X
                    304: *
                    305:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    306:          CALL ZHBMV( UPLO, N, KD, -ONE, AB, LDAB, X( 1, J ), 1, ONE,
                    307:      $               WORK, 1 )
                    308: *
                    309: *        Compute componentwise relative backward error from formula
                    310: *
                    311: *        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
                    312: *
                    313: *        where abs(Z) is the componentwise absolute value of the matrix
                    314: *        or vector Z.  If the i-th component of the denominator is less
                    315: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    316: *        numerator and denominator before dividing.
                    317: *
                    318:          DO 30 I = 1, N
                    319:             RWORK( I ) = CABS1( B( I, J ) )
                    320:    30    CONTINUE
                    321: *
                    322: *        Compute abs(A)*abs(X) + abs(B).
                    323: *
                    324:          IF( UPPER ) THEN
                    325:             DO 50 K = 1, N
                    326:                S = ZERO
                    327:                XK = CABS1( X( K, J ) )
                    328:                L = KD + 1 - K
                    329:                DO 40 I = MAX( 1, K-KD ), K - 1
                    330:                   RWORK( I ) = RWORK( I ) + CABS1( AB( L+I, K ) )*XK
                    331:                   S = S + CABS1( AB( L+I, K ) )*CABS1( X( I, J ) )
                    332:    40          CONTINUE
                    333:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AB( KD+1, K ) ) )*
                    334:      $                      XK + S
                    335:    50       CONTINUE
                    336:          ELSE
                    337:             DO 70 K = 1, N
                    338:                S = ZERO
                    339:                XK = CABS1( X( K, J ) )
                    340:                RWORK( K ) = RWORK( K ) + ABS( DBLE( AB( 1, K ) ) )*XK
                    341:                L = 1 - K
                    342:                DO 60 I = K + 1, MIN( N, K+KD )
                    343:                   RWORK( I ) = RWORK( I ) + CABS1( AB( L+I, K ) )*XK
                    344:                   S = S + CABS1( AB( L+I, K ) )*CABS1( X( I, J ) )
                    345:    60          CONTINUE
                    346:                RWORK( K ) = RWORK( K ) + S
                    347:    70       CONTINUE
                    348:          END IF
                    349:          S = ZERO
                    350:          DO 80 I = 1, N
                    351:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    352:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    353:             ELSE
                    354:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    355:      $             ( RWORK( I )+SAFE1 ) )
                    356:             END IF
                    357:    80    CONTINUE
                    358:          BERR( J ) = S
                    359: *
                    360: *        Test stopping criterion. Continue iterating if
                    361: *           1) The residual BERR(J) is larger than machine epsilon, and
                    362: *           2) BERR(J) decreased by at least a factor of 2 during the
                    363: *              last iteration, and
                    364: *           3) At most ITMAX iterations tried.
                    365: *
                    366:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    367:      $       COUNT.LE.ITMAX ) THEN
                    368: *
                    369: *           Update solution and try again.
                    370: *
                    371:             CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
                    372:             CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
                    373:             LSTRES = BERR( J )
                    374:             COUNT = COUNT + 1
                    375:             GO TO 20
                    376:          END IF
                    377: *
                    378: *        Bound error from formula
                    379: *
                    380: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    381: *        norm( abs(inv(A))*
                    382: *           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
                    383: *
                    384: *        where
                    385: *          norm(Z) is the magnitude of the largest component of Z
                    386: *          inv(A) is the inverse of A
                    387: *          abs(Z) is the componentwise absolute value of the matrix or
                    388: *             vector Z
                    389: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    390: *          EPS is machine epsilon
                    391: *
                    392: *        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
                    393: *        is incremented by SAFE1 if the i-th component of
                    394: *        abs(A)*abs(X) + abs(B) is less than SAFE2.
                    395: *
                    396: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    397: *           inv(A) * diag(W),
                    398: *        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
                    399: *
                    400:          DO 90 I = 1, N
                    401:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    402:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    403:             ELSE
                    404:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    405:      $                      SAFE1
                    406:             END IF
                    407:    90    CONTINUE
                    408: *
                    409:          KASE = 0
                    410:   100    CONTINUE
                    411:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    412:          IF( KASE.NE.0 ) THEN
                    413:             IF( KASE.EQ.1 ) THEN
                    414: *
1.8       bertrand  415: *              Multiply by diag(W)*inv(A**H).
1.1       bertrand  416: *
                    417:                CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
                    418:                DO 110 I = 1, N
                    419:                   WORK( I ) = RWORK( I )*WORK( I )
                    420:   110          CONTINUE
                    421:             ELSE IF( KASE.EQ.2 ) THEN
                    422: *
                    423: *              Multiply by inv(A)*diag(W).
                    424: *
                    425:                DO 120 I = 1, N
                    426:                   WORK( I ) = RWORK( I )*WORK( I )
                    427:   120          CONTINUE
                    428:                CALL ZPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK, N, INFO )
                    429:             END IF
                    430:             GO TO 100
                    431:          END IF
                    432: *
                    433: *        Normalize error.
                    434: *
                    435:          LSTRES = ZERO
                    436:          DO 130 I = 1, N
                    437:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    438:   130    CONTINUE
                    439:          IF( LSTRES.NE.ZERO )
                    440:      $      FERR( J ) = FERR( J ) / LSTRES
                    441: *
                    442:   140 CONTINUE
                    443: *
                    444:       RETURN
                    445: *
                    446: *     End of ZPBRFS
                    447: *
                    448:       END

CVSweb interface <joel.bertrand@systella.fr>