File:  [local] / rpl / lapack / lapack / zlatdf.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:32 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLATDF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatdf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatdf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatdf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
   22: *                          JPIV )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            IJOB, LDZ, N
   26: *       DOUBLE PRECISION   RDSCAL, RDSUM
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * ), JPIV( * )
   30: *       COMPLEX*16         RHS( * ), Z( LDZ, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZLATDF computes the contribution to the reciprocal Dif-estimate
   40: *> by solving for x in Z * x = b, where b is chosen such that the norm
   41: *> of x is as large as possible. It is assumed that LU decomposition
   42: *> of Z has been computed by ZGETC2. On entry RHS = f holds the
   43: *> contribution from earlier solved sub-systems, and on return RHS = x.
   44: *>
   45: *> The factorization of Z returned by ZGETC2 has the form
   46: *> Z = P * L * U * Q, where P and Q are permutation matrices. L is lower
   47: *> triangular with unit diagonal elements and U is upper triangular.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] IJOB
   54: *> \verbatim
   55: *>          IJOB is INTEGER
   56: *>          IJOB = 2: First compute an approximative null-vector e
   57: *>              of Z using ZGECON, e is normalized and solve for
   58: *>              Zx = +-e - f with the sign giving the greater value of
   59: *>              2-norm(x).  About 5 times as expensive as Default.
   60: *>          IJOB .ne. 2: Local look ahead strategy where
   61: *>              all entries of the r.h.s. b is chosen as either +1 or
   62: *>              -1.  Default.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The number of columns of the matrix Z.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] Z
   72: *> \verbatim
   73: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
   74: *>          On entry, the LU part of the factorization of the n-by-n
   75: *>          matrix Z computed by ZGETC2:  Z = P * L * U * Q
   76: *> \endverbatim
   77: *>
   78: *> \param[in] LDZ
   79: *> \verbatim
   80: *>          LDZ is INTEGER
   81: *>          The leading dimension of the array Z.  LDA >= max(1, N).
   82: *> \endverbatim
   83: *>
   84: *> \param[in,out] RHS
   85: *> \verbatim
   86: *>          RHS is COMPLEX*16 array, dimension (N).
   87: *>          On entry, RHS contains contributions from other subsystems.
   88: *>          On exit, RHS contains the solution of the subsystem with
   89: *>          entries according to the value of IJOB (see above).
   90: *> \endverbatim
   91: *>
   92: *> \param[in,out] RDSUM
   93: *> \verbatim
   94: *>          RDSUM is DOUBLE PRECISION
   95: *>          On entry, the sum of squares of computed contributions to
   96: *>          the Dif-estimate under computation by ZTGSYL, where the
   97: *>          scaling factor RDSCAL (see below) has been factored out.
   98: *>          On exit, the corresponding sum of squares updated with the
   99: *>          contributions from the current sub-system.
  100: *>          If TRANS = 'T' RDSUM is not touched.
  101: *>          NOTE: RDSUM only makes sense when ZTGSY2 is called by CTGSYL.
  102: *> \endverbatim
  103: *>
  104: *> \param[in,out] RDSCAL
  105: *> \verbatim
  106: *>          RDSCAL is DOUBLE PRECISION
  107: *>          On entry, scaling factor used to prevent overflow in RDSUM.
  108: *>          On exit, RDSCAL is updated w.r.t. the current contributions
  109: *>          in RDSUM.
  110: *>          If TRANS = 'T', RDSCAL is not touched.
  111: *>          NOTE: RDSCAL only makes sense when ZTGSY2 is called by
  112: *>          ZTGSYL.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] IPIV
  116: *> \verbatim
  117: *>          IPIV is INTEGER array, dimension (N).
  118: *>          The pivot indices; for 1 <= i <= N, row i of the
  119: *>          matrix has been interchanged with row IPIV(i).
  120: *> \endverbatim
  121: *>
  122: *> \param[in] JPIV
  123: *> \verbatim
  124: *>          JPIV is INTEGER array, dimension (N).
  125: *>          The pivot indices; for 1 <= j <= N, column j of the
  126: *>          matrix has been interchanged with column JPIV(j).
  127: *> \endverbatim
  128: *
  129: *  Authors:
  130: *  ========
  131: *
  132: *> \author Univ. of Tennessee
  133: *> \author Univ. of California Berkeley
  134: *> \author Univ. of Colorado Denver
  135: *> \author NAG Ltd.
  136: *
  137: *> \ingroup complex16OTHERauxiliary
  138: *
  139: *> \par Further Details:
  140: *  =====================
  141: *>
  142: *>  This routine is a further developed implementation of algorithm
  143: *>  BSOLVE in [1] using complete pivoting in the LU factorization.
  144: *
  145: *> \par Contributors:
  146: *  ==================
  147: *>
  148: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  149: *>     Umea University, S-901 87 Umea, Sweden.
  150: *
  151: *> \par References:
  152: *  ================
  153: *>
  154: *>   [1]   Bo Kagstrom and Lars Westin,
  155: *>         Generalized Schur Methods with Condition Estimators for
  156: *>         Solving the Generalized Sylvester Equation, IEEE Transactions
  157: *>         on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
  158: *>\n
  159: *>   [2]   Peter Poromaa,
  160: *>         On Efficient and Robust Estimators for the Separation
  161: *>         between two Regular Matrix Pairs with Applications in
  162: *>         Condition Estimation. Report UMINF-95.05, Department of
  163: *>         Computing Science, Umea University, S-901 87 Umea, Sweden,
  164: *>         1995.
  165: *
  166: *  =====================================================================
  167:       SUBROUTINE ZLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
  168:      $                   JPIV )
  169: *
  170: *  -- LAPACK auxiliary routine --
  171: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  172: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  173: *
  174: *     .. Scalar Arguments ..
  175:       INTEGER            IJOB, LDZ, N
  176:       DOUBLE PRECISION   RDSCAL, RDSUM
  177: *     ..
  178: *     .. Array Arguments ..
  179:       INTEGER            IPIV( * ), JPIV( * )
  180:       COMPLEX*16         RHS( * ), Z( LDZ, * )
  181: *     ..
  182: *
  183: *  =====================================================================
  184: *
  185: *     .. Parameters ..
  186:       INTEGER            MAXDIM
  187:       PARAMETER          ( MAXDIM = 2 )
  188:       DOUBLE PRECISION   ZERO, ONE
  189:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  190:       COMPLEX*16         CONE
  191:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  192: *     ..
  193: *     .. Local Scalars ..
  194:       INTEGER            I, INFO, J, K
  195:       DOUBLE PRECISION   RTEMP, SCALE, SMINU, SPLUS
  196:       COMPLEX*16         BM, BP, PMONE, TEMP
  197: *     ..
  198: *     .. Local Arrays ..
  199:       DOUBLE PRECISION   RWORK( MAXDIM )
  200:       COMPLEX*16         WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
  201: *     ..
  202: *     .. External Subroutines ..
  203:       EXTERNAL           ZAXPY, ZCOPY, ZGECON, ZGESC2, ZLASSQ, ZLASWP,
  204:      $                   ZSCAL
  205: *     ..
  206: *     .. External Functions ..
  207:       DOUBLE PRECISION   DZASUM
  208:       COMPLEX*16         ZDOTC
  209:       EXTERNAL           DZASUM, ZDOTC
  210: *     ..
  211: *     .. Intrinsic Functions ..
  212:       INTRINSIC          ABS, DBLE, SQRT
  213: *     ..
  214: *     .. Executable Statements ..
  215: *
  216:       IF( IJOB.NE.2 ) THEN
  217: *
  218: *        Apply permutations IPIV to RHS
  219: *
  220:          CALL ZLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
  221: *
  222: *        Solve for L-part choosing RHS either to +1 or -1.
  223: *
  224:          PMONE = -CONE
  225:          DO 10 J = 1, N - 1
  226:             BP = RHS( J ) + CONE
  227:             BM = RHS( J ) - CONE
  228:             SPLUS = ONE
  229: *
  230: *           Lockahead for L- part RHS(1:N-1) = +-1
  231: *           SPLUS and SMIN computed more efficiently than in BSOLVE[1].
  232: *
  233:             SPLUS = SPLUS + DBLE( ZDOTC( N-J, Z( J+1, J ), 1, Z( J+1,
  234:      $              J ), 1 ) )
  235:             SMINU = DBLE( ZDOTC( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 ) )
  236:             SPLUS = SPLUS*DBLE( RHS( J ) )
  237:             IF( SPLUS.GT.SMINU ) THEN
  238:                RHS( J ) = BP
  239:             ELSE IF( SMINU.GT.SPLUS ) THEN
  240:                RHS( J ) = BM
  241:             ELSE
  242: *
  243: *              In this case the updating sums are equal and we can
  244: *              choose RHS(J) +1 or -1. The first time this happens we
  245: *              choose -1, thereafter +1. This is a simple way to get
  246: *              good estimates of matrices like Byers well-known example
  247: *              (see [1]). (Not done in BSOLVE.)
  248: *
  249:                RHS( J ) = RHS( J ) + PMONE
  250:                PMONE = CONE
  251:             END IF
  252: *
  253: *           Compute the remaining r.h.s.
  254: *
  255:             TEMP = -RHS( J )
  256:             CALL ZAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
  257:    10    CONTINUE
  258: *
  259: *        Solve for U- part, lockahead for RHS(N) = +-1. This is not done
  260: *        In BSOLVE and will hopefully give us a better estimate because
  261: *        any ill-conditioning of the original matrix is transferred to U
  262: *        and not to L. U(N, N) is an approximation to sigma_min(LU).
  263: *
  264:          CALL ZCOPY( N-1, RHS, 1, WORK, 1 )
  265:          WORK( N ) = RHS( N ) + CONE
  266:          RHS( N ) = RHS( N ) - CONE
  267:          SPLUS = ZERO
  268:          SMINU = ZERO
  269:          DO 30 I = N, 1, -1
  270:             TEMP = CONE / Z( I, I )
  271:             WORK( I ) = WORK( I )*TEMP
  272:             RHS( I ) = RHS( I )*TEMP
  273:             DO 20 K = I + 1, N
  274:                WORK( I ) = WORK( I ) - WORK( K )*( Z( I, K )*TEMP )
  275:                RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
  276:    20       CONTINUE
  277:             SPLUS = SPLUS + ABS( WORK( I ) )
  278:             SMINU = SMINU + ABS( RHS( I ) )
  279:    30    CONTINUE
  280:          IF( SPLUS.GT.SMINU )
  281:      $      CALL ZCOPY( N, WORK, 1, RHS, 1 )
  282: *
  283: *        Apply the permutations JPIV to the computed solution (RHS)
  284: *
  285:          CALL ZLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
  286: *
  287: *        Compute the sum of squares
  288: *
  289:          CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
  290:          RETURN
  291:       END IF
  292: *
  293: *     ENTRY IJOB = 2
  294: *
  295: *     Compute approximate nullvector XM of Z
  296: *
  297:       CALL ZGECON( 'I', N, Z, LDZ, ONE, RTEMP, WORK, RWORK, INFO )
  298:       CALL ZCOPY( N, WORK( N+1 ), 1, XM, 1 )
  299: *
  300: *     Compute RHS
  301: *
  302:       CALL ZLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
  303:       TEMP = CONE / SQRT( ZDOTC( N, XM, 1, XM, 1 ) )
  304:       CALL ZSCAL( N, TEMP, XM, 1 )
  305:       CALL ZCOPY( N, XM, 1, XP, 1 )
  306:       CALL ZAXPY( N, CONE, RHS, 1, XP, 1 )
  307:       CALL ZAXPY( N, -CONE, XM, 1, RHS, 1 )
  308:       CALL ZGESC2( N, Z, LDZ, RHS, IPIV, JPIV, SCALE )
  309:       CALL ZGESC2( N, Z, LDZ, XP, IPIV, JPIV, SCALE )
  310:       IF( DZASUM( N, XP, 1 ).GT.DZASUM( N, RHS, 1 ) )
  311:      $   CALL ZCOPY( N, XP, 1, RHS, 1 )
  312: *
  313: *     Compute the sum of squares
  314: *
  315:       CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
  316:       RETURN
  317: *
  318: *     End of ZLATDF
  319: *
  320:       END

CVSweb interface <joel.bertrand@systella.fr>