Annotation of rpl/lapack/lapack/zlatdf.f, revision 1.20

1.11      bertrand    1: *> \brief \b ZLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZLATDF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatdf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatdf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatdf.f">
1.8       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
                     22: *                          JPIV )
1.16      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            IJOB, LDZ, N
                     26: *       DOUBLE PRECISION   RDSCAL, RDSUM
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IPIV( * ), JPIV( * )
                     30: *       COMPLEX*16         RHS( * ), Z( LDZ, * )
                     31: *       ..
1.16      bertrand   32: *
1.8       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> ZLATDF computes the contribution to the reciprocal Dif-estimate
                     40: *> by solving for x in Z * x = b, where b is chosen such that the norm
                     41: *> of x is as large as possible. It is assumed that LU decomposition
                     42: *> of Z has been computed by ZGETC2. On entry RHS = f holds the
                     43: *> contribution from earlier solved sub-systems, and on return RHS = x.
                     44: *>
                     45: *> The factorization of Z returned by ZGETC2 has the form
                     46: *> Z = P * L * U * Q, where P and Q are permutation matrices. L is lower
                     47: *> triangular with unit diagonal elements and U is upper triangular.
                     48: *> \endverbatim
                     49: *
                     50: *  Arguments:
                     51: *  ==========
                     52: *
                     53: *> \param[in] IJOB
                     54: *> \verbatim
                     55: *>          IJOB is INTEGER
                     56: *>          IJOB = 2: First compute an approximative null-vector e
                     57: *>              of Z using ZGECON, e is normalized and solve for
                     58: *>              Zx = +-e - f with the sign giving the greater value of
                     59: *>              2-norm(x).  About 5 times as expensive as Default.
                     60: *>          IJOB .ne. 2: Local look ahead strategy where
1.14      bertrand   61: *>              all entries of the r.h.s. b is chosen as either +1 or
1.8       bertrand   62: *>              -1.  Default.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] N
                     66: *> \verbatim
                     67: *>          N is INTEGER
                     68: *>          The number of columns of the matrix Z.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] Z
                     72: *> \verbatim
1.14      bertrand   73: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
1.8       bertrand   74: *>          On entry, the LU part of the factorization of the n-by-n
                     75: *>          matrix Z computed by ZGETC2:  Z = P * L * U * Q
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in] LDZ
                     79: *> \verbatim
                     80: *>          LDZ is INTEGER
                     81: *>          The leading dimension of the array Z.  LDA >= max(1, N).
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in,out] RHS
                     85: *> \verbatim
1.14      bertrand   86: *>          RHS is COMPLEX*16 array, dimension (N).
1.8       bertrand   87: *>          On entry, RHS contains contributions from other subsystems.
                     88: *>          On exit, RHS contains the solution of the subsystem with
                     89: *>          entries according to the value of IJOB (see above).
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in,out] RDSUM
                     93: *> \verbatim
                     94: *>          RDSUM is DOUBLE PRECISION
                     95: *>          On entry, the sum of squares of computed contributions to
                     96: *>          the Dif-estimate under computation by ZTGSYL, where the
                     97: *>          scaling factor RDSCAL (see below) has been factored out.
                     98: *>          On exit, the corresponding sum of squares updated with the
                     99: *>          contributions from the current sub-system.
                    100: *>          If TRANS = 'T' RDSUM is not touched.
                    101: *>          NOTE: RDSUM only makes sense when ZTGSY2 is called by CTGSYL.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in,out] RDSCAL
                    105: *> \verbatim
                    106: *>          RDSCAL is DOUBLE PRECISION
                    107: *>          On entry, scaling factor used to prevent overflow in RDSUM.
                    108: *>          On exit, RDSCAL is updated w.r.t. the current contributions
                    109: *>          in RDSUM.
                    110: *>          If TRANS = 'T', RDSCAL is not touched.
                    111: *>          NOTE: RDSCAL only makes sense when ZTGSY2 is called by
                    112: *>          ZTGSYL.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] IPIV
                    116: *> \verbatim
                    117: *>          IPIV is INTEGER array, dimension (N).
                    118: *>          The pivot indices; for 1 <= i <= N, row i of the
                    119: *>          matrix has been interchanged with row IPIV(i).
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] JPIV
                    123: *> \verbatim
                    124: *>          JPIV is INTEGER array, dimension (N).
                    125: *>          The pivot indices; for 1 <= j <= N, column j of the
                    126: *>          matrix has been interchanged with column JPIV(j).
                    127: *> \endverbatim
                    128: *
                    129: *  Authors:
                    130: *  ========
                    131: *
1.16      bertrand  132: *> \author Univ. of Tennessee
                    133: *> \author Univ. of California Berkeley
                    134: *> \author Univ. of Colorado Denver
                    135: *> \author NAG Ltd.
1.8       bertrand  136: *
                    137: *> \ingroup complex16OTHERauxiliary
                    138: *
                    139: *> \par Further Details:
                    140: *  =====================
                    141: *>
                    142: *>  This routine is a further developed implementation of algorithm
                    143: *>  BSOLVE in [1] using complete pivoting in the LU factorization.
                    144: *
                    145: *> \par Contributors:
                    146: *  ==================
                    147: *>
                    148: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                    149: *>     Umea University, S-901 87 Umea, Sweden.
                    150: *
                    151: *> \par References:
                    152: *  ================
                    153: *>
                    154: *>   [1]   Bo Kagstrom and Lars Westin,
                    155: *>         Generalized Schur Methods with Condition Estimators for
                    156: *>         Solving the Generalized Sylvester Equation, IEEE Transactions
                    157: *>         on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
                    158: *>\n
                    159: *>   [2]   Peter Poromaa,
                    160: *>         On Efficient and Robust Estimators for the Separation
                    161: *>         between two Regular Matrix Pairs with Applications in
                    162: *>         Condition Estimation. Report UMINF-95.05, Department of
                    163: *>         Computing Science, Umea University, S-901 87 Umea, Sweden,
                    164: *>         1995.
                    165: *
                    166: *  =====================================================================
1.1       bertrand  167:       SUBROUTINE ZLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
                    168:      $                   JPIV )
                    169: *
1.20    ! bertrand  170: *  -- LAPACK auxiliary routine --
1.1       bertrand  171: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    172: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    173: *
                    174: *     .. Scalar Arguments ..
                    175:       INTEGER            IJOB, LDZ, N
                    176:       DOUBLE PRECISION   RDSCAL, RDSUM
                    177: *     ..
                    178: *     .. Array Arguments ..
                    179:       INTEGER            IPIV( * ), JPIV( * )
                    180:       COMPLEX*16         RHS( * ), Z( LDZ, * )
                    181: *     ..
                    182: *
                    183: *  =====================================================================
                    184: *
                    185: *     .. Parameters ..
                    186:       INTEGER            MAXDIM
                    187:       PARAMETER          ( MAXDIM = 2 )
                    188:       DOUBLE PRECISION   ZERO, ONE
                    189:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    190:       COMPLEX*16         CONE
                    191:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    192: *     ..
                    193: *     .. Local Scalars ..
                    194:       INTEGER            I, INFO, J, K
                    195:       DOUBLE PRECISION   RTEMP, SCALE, SMINU, SPLUS
                    196:       COMPLEX*16         BM, BP, PMONE, TEMP
                    197: *     ..
                    198: *     .. Local Arrays ..
                    199:       DOUBLE PRECISION   RWORK( MAXDIM )
                    200:       COMPLEX*16         WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
                    201: *     ..
                    202: *     .. External Subroutines ..
                    203:       EXTERNAL           ZAXPY, ZCOPY, ZGECON, ZGESC2, ZLASSQ, ZLASWP,
                    204:      $                   ZSCAL
                    205: *     ..
                    206: *     .. External Functions ..
                    207:       DOUBLE PRECISION   DZASUM
                    208:       COMPLEX*16         ZDOTC
                    209:       EXTERNAL           DZASUM, ZDOTC
                    210: *     ..
                    211: *     .. Intrinsic Functions ..
                    212:       INTRINSIC          ABS, DBLE, SQRT
                    213: *     ..
                    214: *     .. Executable Statements ..
                    215: *
                    216:       IF( IJOB.NE.2 ) THEN
                    217: *
                    218: *        Apply permutations IPIV to RHS
                    219: *
                    220:          CALL ZLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
                    221: *
                    222: *        Solve for L-part choosing RHS either to +1 or -1.
                    223: *
                    224:          PMONE = -CONE
                    225:          DO 10 J = 1, N - 1
                    226:             BP = RHS( J ) + CONE
                    227:             BM = RHS( J ) - CONE
                    228:             SPLUS = ONE
                    229: *
                    230: *           Lockahead for L- part RHS(1:N-1) = +-1
                    231: *           SPLUS and SMIN computed more efficiently than in BSOLVE[1].
                    232: *
                    233:             SPLUS = SPLUS + DBLE( ZDOTC( N-J, Z( J+1, J ), 1, Z( J+1,
                    234:      $              J ), 1 ) )
                    235:             SMINU = DBLE( ZDOTC( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 ) )
                    236:             SPLUS = SPLUS*DBLE( RHS( J ) )
                    237:             IF( SPLUS.GT.SMINU ) THEN
                    238:                RHS( J ) = BP
                    239:             ELSE IF( SMINU.GT.SPLUS ) THEN
                    240:                RHS( J ) = BM
                    241:             ELSE
                    242: *
                    243: *              In this case the updating sums are equal and we can
                    244: *              choose RHS(J) +1 or -1. The first time this happens we
                    245: *              choose -1, thereafter +1. This is a simple way to get
                    246: *              good estimates of matrices like Byers well-known example
                    247: *              (see [1]). (Not done in BSOLVE.)
                    248: *
                    249:                RHS( J ) = RHS( J ) + PMONE
                    250:                PMONE = CONE
                    251:             END IF
                    252: *
                    253: *           Compute the remaining r.h.s.
                    254: *
                    255:             TEMP = -RHS( J )
                    256:             CALL ZAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
                    257:    10    CONTINUE
                    258: *
                    259: *        Solve for U- part, lockahead for RHS(N) = +-1. This is not done
                    260: *        In BSOLVE and will hopefully give us a better estimate because
1.19      bertrand  261: *        any ill-conditioning of the original matrix is transferred to U
1.1       bertrand  262: *        and not to L. U(N, N) is an approximation to sigma_min(LU).
                    263: *
                    264:          CALL ZCOPY( N-1, RHS, 1, WORK, 1 )
                    265:          WORK( N ) = RHS( N ) + CONE
                    266:          RHS( N ) = RHS( N ) - CONE
                    267:          SPLUS = ZERO
                    268:          SMINU = ZERO
                    269:          DO 30 I = N, 1, -1
                    270:             TEMP = CONE / Z( I, I )
                    271:             WORK( I ) = WORK( I )*TEMP
                    272:             RHS( I ) = RHS( I )*TEMP
                    273:             DO 20 K = I + 1, N
                    274:                WORK( I ) = WORK( I ) - WORK( K )*( Z( I, K )*TEMP )
                    275:                RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
                    276:    20       CONTINUE
                    277:             SPLUS = SPLUS + ABS( WORK( I ) )
                    278:             SMINU = SMINU + ABS( RHS( I ) )
                    279:    30    CONTINUE
                    280:          IF( SPLUS.GT.SMINU )
                    281:      $      CALL ZCOPY( N, WORK, 1, RHS, 1 )
                    282: *
                    283: *        Apply the permutations JPIV to the computed solution (RHS)
                    284: *
                    285:          CALL ZLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
                    286: *
                    287: *        Compute the sum of squares
                    288: *
                    289:          CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
                    290:          RETURN
                    291:       END IF
                    292: *
                    293: *     ENTRY IJOB = 2
                    294: *
                    295: *     Compute approximate nullvector XM of Z
                    296: *
                    297:       CALL ZGECON( 'I', N, Z, LDZ, ONE, RTEMP, WORK, RWORK, INFO )
                    298:       CALL ZCOPY( N, WORK( N+1 ), 1, XM, 1 )
                    299: *
                    300: *     Compute RHS
                    301: *
                    302:       CALL ZLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
                    303:       TEMP = CONE / SQRT( ZDOTC( N, XM, 1, XM, 1 ) )
                    304:       CALL ZSCAL( N, TEMP, XM, 1 )
                    305:       CALL ZCOPY( N, XM, 1, XP, 1 )
                    306:       CALL ZAXPY( N, CONE, RHS, 1, XP, 1 )
                    307:       CALL ZAXPY( N, -CONE, XM, 1, RHS, 1 )
                    308:       CALL ZGESC2( N, Z, LDZ, RHS, IPIV, JPIV, SCALE )
                    309:       CALL ZGESC2( N, Z, LDZ, XP, IPIV, JPIV, SCALE )
                    310:       IF( DZASUM( N, XP, 1 ).GT.DZASUM( N, RHS, 1 ) )
                    311:      $   CALL ZCOPY( N, XP, 1, RHS, 1 )
                    312: *
                    313: *     Compute the sum of squares
                    314: *
                    315:       CALL ZLASSQ( N, RHS, 1, RDSCAL, RDSUM )
                    316:       RETURN
                    317: *
                    318: *     End of ZLATDF
                    319: *
                    320:       END

CVSweb interface <joel.bertrand@systella.fr>