File:  [local] / rpl / lapack / lapack / zlasyf_rk.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:09 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZLASYF_RK computes a partial factorization of a complex symmetric indefinite matrix using bounded Bunch-Kaufman (rook) diagonal pivoting method.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLASYF_RK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf_rk.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf_rk.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf_rk.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
   22: *                             INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, KB, LDA, LDW, N, NB
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IPIV( * )
   30: *       COMPLEX*16         A( LDA, * ), E( * ), W( LDW, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *> ZLASYF_RK computes a partial factorization of a complex symmetric
   39: *> matrix A using the bounded Bunch-Kaufman (rook) diagonal
   40: *> pivoting method. The partial factorization has the form:
   41: *>
   42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
   43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
   44: *>
   45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L',
   46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
   47: *>
   48: *> where the order of D is at most NB. The actual order is returned in
   49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
   50: *>
   51: *> ZLASYF_RK is an auxiliary routine called by ZSYTRF_RK. It uses
   52: *> blocked code (calling Level 3 BLAS) to update the submatrix
   53: *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          Specifies whether the upper or lower triangular part of the
   63: *>          symmetric matrix A is stored:
   64: *>          = 'U':  Upper triangular
   65: *>          = 'L':  Lower triangular
   66: *> \endverbatim
   67: *>
   68: *> \param[in] N
   69: *> \verbatim
   70: *>          N is INTEGER
   71: *>          The order of the matrix A.  N >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] NB
   75: *> \verbatim
   76: *>          NB is INTEGER
   77: *>          The maximum number of columns of the matrix A that should be
   78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   79: *>          blocks.
   80: *> \endverbatim
   81: *>
   82: *> \param[out] KB
   83: *> \verbatim
   84: *>          KB is INTEGER
   85: *>          The number of columns of A that were actually factored.
   86: *>          KB is either NB-1 or NB, or N if N <= NB.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] A
   90: *> \verbatim
   91: *>          A is COMPLEX*16 array, dimension (LDA,N)
   92: *>          On entry, the symmetric matrix A.
   93: *>            If UPLO = 'U': the leading N-by-N upper triangular part
   94: *>            of A contains the upper triangular part of the matrix A,
   95: *>            and the strictly lower triangular part of A is not
   96: *>            referenced.
   97: *>
   98: *>            If UPLO = 'L': the leading N-by-N lower triangular part
   99: *>            of A contains the lower triangular part of the matrix A,
  100: *>            and the strictly upper triangular part of A is not
  101: *>            referenced.
  102: *>
  103: *>          On exit, contains:
  104: *>            a) ONLY diagonal elements of the symmetric block diagonal
  105: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
  106: *>               (superdiagonal (or subdiagonal) elements of D
  107: *>                are stored on exit in array E), and
  108: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
  109: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDA
  113: *> \verbatim
  114: *>          LDA is INTEGER
  115: *>          The leading dimension of the array A.  LDA >= max(1,N).
  116: *> \endverbatim
  117: *>
  118: *> \param[out] E
  119: *> \verbatim
  120: *>          E is COMPLEX*16 array, dimension (N)
  121: *>          On exit, contains the superdiagonal (or subdiagonal)
  122: *>          elements of the symmetric block diagonal matrix D
  123: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
  124: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
  125: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
  126: *>
  127: *>          NOTE: For 1-by-1 diagonal block D(k), where
  128: *>          1 <= k <= N, the element E(k) is set to 0 in both
  129: *>          UPLO = 'U' or UPLO = 'L' cases.
  130: *> \endverbatim
  131: *>
  132: *> \param[out] IPIV
  133: *> \verbatim
  134: *>          IPIV is INTEGER array, dimension (N)
  135: *>          IPIV describes the permutation matrix P in the factorization
  136: *>          of matrix A as follows. The absolute value of IPIV(k)
  137: *>          represents the index of row and column that were
  138: *>          interchanged with the k-th row and column. The value of UPLO
  139: *>          describes the order in which the interchanges were applied.
  140: *>          Also, the sign of IPIV represents the block structure of
  141: *>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
  142: *>          diagonal blocks which correspond to 1 or 2 interchanges
  143: *>          at each factorization step.
  144: *>
  145: *>          If UPLO = 'U',
  146: *>          ( in factorization order, k decreases from N to 1 ):
  147: *>            a) A single positive entry IPIV(k) > 0 means:
  148: *>               D(k,k) is a 1-by-1 diagonal block.
  149: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  150: *>               interchanged in the submatrix A(1:N,N-KB+1:N);
  151: *>               If IPIV(k) = k, no interchange occurred.
  152: *>
  153: *>
  154: *>            b) A pair of consecutive negative entries
  155: *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
  156: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  157: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  158: *>               1) If -IPIV(k) != k, rows and columns
  159: *>                  k and -IPIV(k) were interchanged
  160: *>                  in the matrix A(1:N,N-KB+1:N).
  161: *>                  If -IPIV(k) = k, no interchange occurred.
  162: *>               2) If -IPIV(k-1) != k-1, rows and columns
  163: *>                  k-1 and -IPIV(k-1) were interchanged
  164: *>                  in the submatrix A(1:N,N-KB+1:N).
  165: *>                  If -IPIV(k-1) = k-1, no interchange occurred.
  166: *>
  167: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.
  168: *>
  169: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  170: *>
  171: *>          If UPLO = 'L',
  172: *>          ( in factorization order, k increases from 1 to N ):
  173: *>            a) A single positive entry IPIV(k) > 0 means:
  174: *>               D(k,k) is a 1-by-1 diagonal block.
  175: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
  176: *>               interchanged in the submatrix A(1:N,1:KB).
  177: *>               If IPIV(k) = k, no interchange occurred.
  178: *>
  179: *>            b) A pair of consecutive negative entries
  180: *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
  181: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  182: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
  183: *>               1) If -IPIV(k) != k, rows and columns
  184: *>                  k and -IPIV(k) were interchanged
  185: *>                  in the submatrix A(1:N,1:KB).
  186: *>                  If -IPIV(k) = k, no interchange occurred.
  187: *>               2) If -IPIV(k+1) != k+1, rows and columns
  188: *>                  k-1 and -IPIV(k-1) were interchanged
  189: *>                  in the submatrix A(1:N,1:KB).
  190: *>                  If -IPIV(k+1) = k+1, no interchange occurred.
  191: *>
  192: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.
  193: *>
  194: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
  195: *> \endverbatim
  196: *>
  197: *> \param[out] W
  198: *> \verbatim
  199: *>          W is COMPLEX*16 array, dimension (LDW,NB)
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDW
  203: *> \verbatim
  204: *>          LDW is INTEGER
  205: *>          The leading dimension of the array W.  LDW >= max(1,N).
  206: *> \endverbatim
  207: *>
  208: *> \param[out] INFO
  209: *> \verbatim
  210: *>          INFO is INTEGER
  211: *>          = 0: successful exit
  212: *>
  213: *>          < 0: If INFO = -k, the k-th argument had an illegal value
  214: *>
  215: *>          > 0: If INFO = k, the matrix A is singular, because:
  216: *>                 If UPLO = 'U': column k in the upper
  217: *>                 triangular part of A contains all zeros.
  218: *>                 If UPLO = 'L': column k in the lower
  219: *>                 triangular part of A contains all zeros.
  220: *>
  221: *>               Therefore D(k,k) is exactly zero, and superdiagonal
  222: *>               elements of column k of U (or subdiagonal elements of
  223: *>               column k of L ) are all zeros. The factorization has
  224: *>               been completed, but the block diagonal matrix D is
  225: *>               exactly singular, and division by zero will occur if
  226: *>               it is used to solve a system of equations.
  227: *>
  228: *>               NOTE: INFO only stores the first occurrence of
  229: *>               a singularity, any subsequent occurrence of singularity
  230: *>               is not stored in INFO even though the factorization
  231: *>               always completes.
  232: *> \endverbatim
  233: *
  234: *  Authors:
  235: *  ========
  236: *
  237: *> \author Univ. of Tennessee
  238: *> \author Univ. of California Berkeley
  239: *> \author Univ. of Colorado Denver
  240: *> \author NAG Ltd.
  241: *
  242: *> \date December 2016
  243: *
  244: *> \ingroup complex16SYcomputational
  245: *
  246: *> \par Contributors:
  247: *  ==================
  248: *>
  249: *> \verbatim
  250: *>
  251: *>  December 2016,  Igor Kozachenko,
  252: *>                  Computer Science Division,
  253: *>                  University of California, Berkeley
  254: *>
  255: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  256: *>                  School of Mathematics,
  257: *>                  University of Manchester
  258: *>
  259: *> \endverbatim
  260: *
  261: *  =====================================================================
  262:       SUBROUTINE ZLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
  263:      $                      INFO )
  264: *
  265: *  -- LAPACK computational routine (version 3.7.0) --
  266: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  267: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  268: *     December 2016
  269: *
  270: *     .. Scalar Arguments ..
  271:       CHARACTER          UPLO
  272:       INTEGER            INFO, KB, LDA, LDW, N, NB
  273: *     ..
  274: *     .. Array Arguments ..
  275:       INTEGER            IPIV( * )
  276:       COMPLEX*16         A( LDA, * ), E( * ), W( LDW, * )
  277: *     ..
  278: *
  279: *  =====================================================================
  280: *
  281: *     .. Parameters ..
  282:       DOUBLE PRECISION   ZERO, ONE
  283:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  284:       DOUBLE PRECISION   EIGHT, SEVTEN
  285:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  286:       COMPLEX*16         CONE, CZERO
  287:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
  288:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
  289: *     ..
  290: *     .. Local Scalars ..
  291:       LOGICAL            DONE
  292:       INTEGER            IMAX, ITEMP, J, JB, JJ, JMAX, K, KK, KW, KKW,
  293:      $                   KP, KSTEP, P, II
  294:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX, SFMIN, DTEMP
  295:       COMPLEX*16         D11, D12, D21, D22, R1, T, Z
  296: *     ..
  297: *     .. External Functions ..
  298:       LOGICAL            LSAME
  299:       INTEGER            IZAMAX
  300:       DOUBLE PRECISION   DLAMCH
  301:       EXTERNAL           LSAME, IZAMAX, DLAMCH
  302: *     ..
  303: *     .. External Subroutines ..
  304:       EXTERNAL           ZCOPY, ZGEMM, ZGEMV, ZSCAL, ZSWAP
  305: *     ..
  306: *     .. Intrinsic Functions ..
  307:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN, SQRT
  308: *     ..
  309: *     .. Statement Functions ..
  310:       DOUBLE PRECISION   CABS1
  311: *     ..
  312: *     .. Statement Function definitions ..
  313:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  314: *     ..
  315: *     .. Executable Statements ..
  316: *
  317:       INFO = 0
  318: *
  319: *     Initialize ALPHA for use in choosing pivot block size.
  320: *
  321:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  322: *
  323: *     Compute machine safe minimum
  324: *
  325:       SFMIN = DLAMCH( 'S' )
  326: *
  327:       IF( LSAME( UPLO, 'U' ) ) THEN
  328: *
  329: *        Factorize the trailing columns of A using the upper triangle
  330: *        of A and working backwards, and compute the matrix W = U12*D
  331: *        for use in updating A11
  332: *
  333: *        Initialize the first entry of array E, where superdiagonal
  334: *        elements of D are stored
  335: *
  336:          E( 1 ) = CZERO
  337: *
  338: *        K is the main loop index, decreasing from N in steps of 1 or 2
  339: *
  340:          K = N
  341:    10    CONTINUE
  342: *
  343: *        KW is the column of W which corresponds to column K of A
  344: *
  345:          KW = NB + K - N
  346: *
  347: *        Exit from loop
  348: *
  349:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  350:      $      GO TO 30
  351: *
  352:          KSTEP = 1
  353:          P = K
  354: *
  355: *        Copy column K of A to column KW of W and update it
  356: *
  357:          CALL ZCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
  358:          IF( K.LT.N )
  359:      $      CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ),
  360:      $                  LDA, W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  361: *
  362: *        Determine rows and columns to be interchanged and whether
  363: *        a 1-by-1 or 2-by-2 pivot block will be used
  364: *
  365:          ABSAKK = CABS1( W( K, KW ) )
  366: *
  367: *        IMAX is the row-index of the largest off-diagonal element in
  368: *        column K, and COLMAX is its absolute value.
  369: *        Determine both COLMAX and IMAX.
  370: *
  371:          IF( K.GT.1 ) THEN
  372:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  373:             COLMAX = CABS1( W( IMAX, KW ) )
  374:          ELSE
  375:             COLMAX = ZERO
  376:          END IF
  377: *
  378:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  379: *
  380: *           Column K is zero or underflow: set INFO and continue
  381: *
  382:             IF( INFO.EQ.0 )
  383:      $         INFO = K
  384:             KP = K
  385:             CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  386: *
  387: *           Set E( K ) to zero
  388: *
  389:             IF( K.GT.1 )
  390:      $         E( K ) = CZERO
  391: *
  392:          ELSE
  393: *
  394: *           ============================================================
  395: *
  396: *           Test for interchange
  397: *
  398: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  399: *           (used to handle NaN and Inf)
  400: *
  401:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  402: *
  403: *              no interchange, use 1-by-1 pivot block
  404: *
  405:                KP = K
  406: *
  407:             ELSE
  408: *
  409:                DONE = .FALSE.
  410: *
  411: *              Loop until pivot found
  412: *
  413:    12          CONTINUE
  414: *
  415: *                 Begin pivot search loop body
  416: *
  417: *
  418: *                 Copy column IMAX to column KW-1 of W and update it
  419: *
  420:                   CALL ZCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  421:                   CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  422:      $                        W( IMAX+1, KW-1 ), 1 )
  423: *
  424:                   IF( K.LT.N )
  425:      $               CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  426:      $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  427:      $                           CONE, W( 1, KW-1 ), 1 )
  428: *
  429: *                 JMAX is the column-index of the largest off-diagonal
  430: *                 element in row IMAX, and ROWMAX is its absolute value.
  431: *                 Determine both ROWMAX and JMAX.
  432: *
  433:                   IF( IMAX.NE.K ) THEN
  434:                      JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
  435:      $                                     1 )
  436:                      ROWMAX = CABS1( W( JMAX, KW-1 ) )
  437:                   ELSE
  438:                      ROWMAX = ZERO
  439:                   END IF
  440: *
  441:                   IF( IMAX.GT.1 ) THEN
  442:                      ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  443:                      DTEMP = CABS1( W( ITEMP, KW-1 ) )
  444:                      IF( DTEMP.GT.ROWMAX ) THEN
  445:                         ROWMAX = DTEMP
  446:                         JMAX = ITEMP
  447:                      END IF
  448:                   END IF
  449: *
  450: *                 Equivalent to testing for
  451: *                 CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX
  452: *                 (used to handle NaN and Inf)
  453: *
  454:                   IF( .NOT.(CABS1( W( IMAX, KW-1 ) ).LT.ALPHA*ROWMAX ) )
  455:      $            THEN
  456: *
  457: *                    interchange rows and columns K and IMAX,
  458: *                    use 1-by-1 pivot block
  459: *
  460:                      KP = IMAX
  461: *
  462: *                    copy column KW-1 of W to column KW of W
  463: *
  464:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  465: *
  466:                      DONE = .TRUE.
  467: *
  468: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  469: *                 (used to handle NaN and Inf)
  470: *
  471:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  472:      $            THEN
  473: *
  474: *                    interchange rows and columns K-1 and IMAX,
  475: *                    use 2-by-2 pivot block
  476: *
  477:                      KP = IMAX
  478:                      KSTEP = 2
  479:                      DONE = .TRUE.
  480:                   ELSE
  481: *
  482: *                    Pivot not found: set params and repeat
  483: *
  484:                      P = IMAX
  485:                      COLMAX = ROWMAX
  486:                      IMAX = JMAX
  487: *
  488: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  489: *
  490:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  491: *
  492:                   END IF
  493: *
  494: *                 End pivot search loop body
  495: *
  496:                IF( .NOT. DONE ) GOTO 12
  497: *
  498:             END IF
  499: *
  500: *           ============================================================
  501: *
  502:             KK = K - KSTEP + 1
  503: *
  504: *           KKW is the column of W which corresponds to column KK of A
  505: *
  506:             KKW = NB + KK - N
  507: *
  508:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  509: *
  510: *              Copy non-updated column K to column P
  511: *
  512:                CALL ZCOPY( K-P, A( P+1, K ), 1, A( P, P+1 ), LDA )
  513:                CALL ZCOPY( P, A( 1, K ), 1, A( 1, P ), 1 )
  514: *
  515: *              Interchange rows K and P in last N-K+1 columns of A
  516: *              and last N-K+2 columns of W
  517: *
  518:                CALL ZSWAP( N-K+1, A( K, K ), LDA, A( P, K ), LDA )
  519:                CALL ZSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ), LDW )
  520:             END IF
  521: *
  522: *           Updated column KP is already stored in column KKW of W
  523: *
  524:             IF( KP.NE.KK ) THEN
  525: *
  526: *              Copy non-updated column KK to column KP
  527: *
  528:                A( KP, K ) = A( KK, K )
  529:                CALL ZCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  530:      $                     LDA )
  531:                CALL ZCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
  532: *
  533: *              Interchange rows KK and KP in last N-KK+1 columns
  534: *              of A and W
  535: *
  536:                CALL ZSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
  537:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  538:      $                     LDW )
  539:             END IF
  540: *
  541:             IF( KSTEP.EQ.1 ) THEN
  542: *
  543: *              1-by-1 pivot block D(k): column KW of W now holds
  544: *
  545: *              W(k) = U(k)*D(k)
  546: *
  547: *              where U(k) is the k-th column of U
  548: *
  549: *              Store U(k) in column k of A
  550: *
  551:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  552:                IF( K.GT.1 ) THEN
  553:                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  554:                      R1 = CONE / A( K, K )
  555:                      CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
  556:                   ELSE IF( A( K, K ).NE.CZERO ) THEN
  557:                      DO 14 II = 1, K - 1
  558:                         A( II, K ) = A( II, K ) / A( K, K )
  559:    14                CONTINUE
  560:                   END IF
  561: *
  562: *                 Store the superdiagonal element of D in array E
  563: *
  564:                   E( K ) = CZERO
  565: *
  566:                END IF
  567: *
  568:             ELSE
  569: *
  570: *              2-by-2 pivot block D(k): columns KW and KW-1 of W now
  571: *              hold
  572: *
  573: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  574: *
  575: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  576: *              of U
  577: *
  578:                IF( K.GT.2 ) THEN
  579: *
  580: *                 Store U(k) and U(k-1) in columns k and k-1 of A
  581: *
  582:                   D12 = W( K-1, KW )
  583:                   D11 = W( K, KW ) / D12
  584:                   D22 = W( K-1, KW-1 ) / D12
  585:                   T = CONE / ( D11*D22-CONE )
  586:                   DO 20 J = 1, K - 2
  587:                      A( J, K-1 ) = T*( (D11*W( J, KW-1 )-W( J, KW ) ) /
  588:      $                             D12 )
  589:                      A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
  590:      $                           D12 )
  591:    20             CONTINUE
  592:                END IF
  593: *
  594: *              Copy diagonal elements of D(K) to A,
  595: *              copy superdiagonal element of D(K) to E(K) and
  596: *              ZERO out superdiagonal entry of A
  597: *
  598:                A( K-1, K-1 ) = W( K-1, KW-1 )
  599:                A( K-1, K ) = CZERO
  600:                A( K, K ) = W( K, KW )
  601:                E( K ) = W( K-1, KW )
  602:                E( K-1 ) = CZERO
  603: *
  604:             END IF
  605: *
  606: *           End column K is nonsingular
  607: *
  608:          END IF
  609: *
  610: *        Store details of the interchanges in IPIV
  611: *
  612:          IF( KSTEP.EQ.1 ) THEN
  613:             IPIV( K ) = KP
  614:          ELSE
  615:             IPIV( K ) = -P
  616:             IPIV( K-1 ) = -KP
  617:          END IF
  618: *
  619: *        Decrease K and return to the start of the main loop
  620: *
  621:          K = K - KSTEP
  622:          GO TO 10
  623: *
  624:    30    CONTINUE
  625: *
  626: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  627: *
  628: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
  629: *
  630: *        computing blocks of NB columns at a time
  631: *
  632:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  633:             JB = MIN( NB, K-J+1 )
  634: *
  635: *           Update the upper triangle of the diagonal block
  636: *
  637:             DO 40 JJ = J, J + JB - 1
  638:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  639:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  640:      $                     A( J, JJ ), 1 )
  641:    40       CONTINUE
  642: *
  643: *           Update the rectangular superdiagonal block
  644: *
  645:             IF( J.GE.2 )
  646:      $         CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB,
  647:      $                     N-K, -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ),
  648:      $                     LDW, CONE, A( 1, J ), LDA )
  649:    50    CONTINUE
  650: *
  651: *        Set KB to the number of columns factorized
  652: *
  653:          KB = N - K
  654: *
  655:       ELSE
  656: *
  657: *        Factorize the leading columns of A using the lower triangle
  658: *        of A and working forwards, and compute the matrix W = L21*D
  659: *        for use in updating A22
  660: *
  661: *        Initialize the unused last entry of the subdiagonal array E.
  662: *
  663:          E( N ) = CZERO
  664: *
  665: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  666: *
  667:          K = 1
  668:    70   CONTINUE
  669: *
  670: *        Exit from loop
  671: *
  672:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  673:      $      GO TO 90
  674: *
  675:          KSTEP = 1
  676:          P = K
  677: *
  678: *        Copy column K of A to column K of W and update it
  679: *
  680:          CALL ZCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
  681:          IF( K.GT.1 )
  682:      $      CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  683:      $                  LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  684: *
  685: *        Determine rows and columns to be interchanged and whether
  686: *        a 1-by-1 or 2-by-2 pivot block will be used
  687: *
  688:          ABSAKK = CABS1( W( K, K ) )
  689: *
  690: *        IMAX is the row-index of the largest off-diagonal element in
  691: *        column K, and COLMAX is its absolute value.
  692: *        Determine both COLMAX and IMAX.
  693: *
  694:          IF( K.LT.N ) THEN
  695:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  696:             COLMAX = CABS1( W( IMAX, K ) )
  697:          ELSE
  698:             COLMAX = ZERO
  699:          END IF
  700: *
  701:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  702: *
  703: *           Column K is zero or underflow: set INFO and continue
  704: *
  705:             IF( INFO.EQ.0 )
  706:      $         INFO = K
  707:             KP = K
  708:             CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  709: *
  710: *           Set E( K ) to zero
  711: *
  712:             IF( K.LT.N )
  713:      $         E( K ) = CZERO
  714: *
  715:          ELSE
  716: *
  717: *           ============================================================
  718: *
  719: *           Test for interchange
  720: *
  721: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
  722: *           (used to handle NaN and Inf)
  723: *
  724:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
  725: *
  726: *              no interchange, use 1-by-1 pivot block
  727: *
  728:                KP = K
  729: *
  730:             ELSE
  731: *
  732:                DONE = .FALSE.
  733: *
  734: *              Loop until pivot found
  735: *
  736:    72          CONTINUE
  737: *
  738: *                 Begin pivot search loop body
  739: *
  740: *
  741: *                 Copy column IMAX to column K+1 of W and update it
  742: *
  743:                   CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
  744:                   CALL ZCOPY( N-IMAX+1, A( IMAX, IMAX ), 1,
  745:      $                        W( IMAX, K+1 ), 1 )
  746:                   IF( K.GT.1 )
  747:      $               CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
  748:      $                           A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
  749:      $                           CONE, W( K, K+1 ), 1 )
  750: *
  751: *                 JMAX is the column-index of the largest off-diagonal
  752: *                 element in row IMAX, and ROWMAX is its absolute value.
  753: *                 Determine both ROWMAX and JMAX.
  754: *
  755:                   IF( IMAX.NE.K ) THEN
  756:                      JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  757:                      ROWMAX = CABS1( W( JMAX, K+1 ) )
  758:                   ELSE
  759:                      ROWMAX = ZERO
  760:                   END IF
  761: *
  762:                   IF( IMAX.LT.N ) THEN
  763:                      ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
  764:                      DTEMP = CABS1( W( ITEMP, K+1 ) )
  765:                      IF( DTEMP.GT.ROWMAX ) THEN
  766:                         ROWMAX = DTEMP
  767:                         JMAX = ITEMP
  768:                      END IF
  769:                   END IF
  770: *
  771: *                 Equivalent to testing for
  772: *                 CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX
  773: *                 (used to handle NaN and Inf)
  774: *
  775:                   IF( .NOT.( CABS1( W( IMAX, K+1 ) ).LT.ALPHA*ROWMAX ) )
  776:      $            THEN
  777: *
  778: *                    interchange rows and columns K and IMAX,
  779: *                    use 1-by-1 pivot block
  780: *
  781:                      KP = IMAX
  782: *
  783: *                    copy column K+1 of W to column K of W
  784: *
  785:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  786: *
  787:                      DONE = .TRUE.
  788: *
  789: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
  790: *                 (used to handle NaN and Inf)
  791: *
  792:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
  793:      $            THEN
  794: *
  795: *                    interchange rows and columns K+1 and IMAX,
  796: *                    use 2-by-2 pivot block
  797: *
  798:                      KP = IMAX
  799:                      KSTEP = 2
  800:                      DONE = .TRUE.
  801:                   ELSE
  802: *
  803: *                    Pivot not found: set params and repeat
  804: *
  805:                      P = IMAX
  806:                      COLMAX = ROWMAX
  807:                      IMAX = JMAX
  808: *
  809: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
  810: *
  811:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  812: *
  813:                   END IF
  814: *
  815: *                 End pivot search loop body
  816: *
  817:                IF( .NOT. DONE ) GOTO 72
  818: *
  819:             END IF
  820: *
  821: *           ============================================================
  822: *
  823:             KK = K + KSTEP - 1
  824: *
  825:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
  826: *
  827: *              Copy non-updated column K to column P
  828: *
  829:                CALL ZCOPY( P-K, A( K, K ), 1, A( P, K ), LDA )
  830:                CALL ZCOPY( N-P+1, A( P, K ), 1, A( P, P ), 1 )
  831: *
  832: *              Interchange rows K and P in first K columns of A
  833: *              and first K+1 columns of W
  834: *
  835:                CALL ZSWAP( K, A( K, 1 ), LDA, A( P, 1 ), LDA )
  836:                CALL ZSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
  837:             END IF
  838: *
  839: *           Updated column KP is already stored in column KK of W
  840: *
  841:             IF( KP.NE.KK ) THEN
  842: *
  843: *              Copy non-updated column KK to column KP
  844: *
  845:                A( KP, K ) = A( KK, K )
  846:                CALL ZCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
  847:                CALL ZCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
  848: *
  849: *              Interchange rows KK and KP in first KK columns of A and W
  850: *
  851:                CALL ZSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  852:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  853:             END IF
  854: *
  855:             IF( KSTEP.EQ.1 ) THEN
  856: *
  857: *              1-by-1 pivot block D(k): column k of W now holds
  858: *
  859: *              W(k) = L(k)*D(k)
  860: *
  861: *              where L(k) is the k-th column of L
  862: *
  863: *              Store L(k) in column k of A
  864: *
  865:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  866:                IF( K.LT.N ) THEN
  867:                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
  868:                      R1 = CONE / A( K, K )
  869:                      CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
  870:                   ELSE IF( A( K, K ).NE.CZERO ) THEN
  871:                      DO 74 II = K + 1, N
  872:                         A( II, K ) = A( II, K ) / A( K, K )
  873:    74                CONTINUE
  874:                   END IF
  875: *
  876: *                 Store the subdiagonal element of D in array E
  877: *
  878:                   E( K ) = CZERO
  879: *
  880:                END IF
  881: *
  882:             ELSE
  883: *
  884: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  885: *
  886: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  887: *
  888: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  889: *              of L
  890: *
  891:                IF( K.LT.N-1 ) THEN
  892: *
  893: *                 Store L(k) and L(k+1) in columns k and k+1 of A
  894: *
  895:                   D21 = W( K+1, K )
  896:                   D11 = W( K+1, K+1 ) / D21
  897:                   D22 = W( K, K ) / D21
  898:                   T = CONE / ( D11*D22-CONE )
  899:                   DO 80 J = K + 2, N
  900:                      A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
  901:      $                           D21 )
  902:                      A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
  903:      $                             D21 )
  904:    80             CONTINUE
  905:                END IF
  906: *
  907: *              Copy diagonal elements of D(K) to A,
  908: *              copy subdiagonal element of D(K) to E(K) and
  909: *              ZERO out subdiagonal entry of A
  910: *
  911:                A( K, K ) = W( K, K )
  912:                A( K+1, K ) = CZERO
  913:                A( K+1, K+1 ) = W( K+1, K+1 )
  914:                E( K ) = W( K+1, K )
  915:                E( K+1 ) = CZERO
  916: *
  917:             END IF
  918: *
  919: *           End column K is nonsingular
  920: *
  921:          END IF
  922: *
  923: *        Store details of the interchanges in IPIV
  924: *
  925:          IF( KSTEP.EQ.1 ) THEN
  926:             IPIV( K ) = KP
  927:          ELSE
  928:             IPIV( K ) = -P
  929:             IPIV( K+1 ) = -KP
  930:          END IF
  931: *
  932: *        Increase K and return to the start of the main loop
  933: *
  934:          K = K + KSTEP
  935:          GO TO 70
  936: *
  937:    90    CONTINUE
  938: *
  939: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
  940: *
  941: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
  942: *
  943: *        computing blocks of NB columns at a time
  944: *
  945:          DO 110 J = K, N, NB
  946:             JB = MIN( NB, N-J+1 )
  947: *
  948: *           Update the lower triangle of the diagonal block
  949: *
  950:             DO 100 JJ = J, J + JB - 1
  951:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
  952:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
  953:      $                     A( JJ, JJ ), 1 )
  954:   100       CONTINUE
  955: *
  956: *           Update the rectangular subdiagonal block
  957: *
  958:             IF( J+JB.LE.N )
  959:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  960:      $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
  961:      $                     LDW, CONE, A( J+JB, J ), LDA )
  962:   110    CONTINUE
  963: *
  964: *        Set KB to the number of columns factorized
  965: *
  966:          KB = K - 1
  967: *
  968:       END IF
  969: *
  970:       RETURN
  971: *
  972: *     End of ZLASYF_RK
  973: *
  974:       END

CVSweb interface <joel.bertrand@systella.fr>