Annotation of rpl/lapack/lapack/zlasyf_rk.f, revision 1.4

1.1       bertrand    1: *> \brief \b ZLASYF_RK computes a partial factorization of a complex symmetric indefinite matrix using bounded Bunch-Kaufman (rook) diagonal pivoting method.
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZLASYF_RK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf_rk.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf_rk.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf_rk.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
                     22: *                             INFO )
                     23: *
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, KB, LDA, LDW, N, NB
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IPIV( * )
                     30: *       COMPLEX*16         A( LDA, * ), E( * ), W( LDW, * )
                     31: *       ..
                     32: *
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *> ZLASYF_RK computes a partial factorization of a complex symmetric
                     39: *> matrix A using the bounded Bunch-Kaufman (rook) diagonal
                     40: *> pivoting method. The partial factorization has the form:
                     41: *>
                     42: *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
                     43: *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
                     44: *>
                     45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L',
                     46: *>       ( L21  I ) (  0  A22 ) (  0       I    )
                     47: *>
                     48: *> where the order of D is at most NB. The actual order is returned in
                     49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
                     50: *>
                     51: *> ZLASYF_RK is an auxiliary routine called by ZSYTRF_RK. It uses
                     52: *> blocked code (calling Level 3 BLAS) to update the submatrix
                     53: *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
                     54: *> \endverbatim
                     55: *
                     56: *  Arguments:
                     57: *  ==========
                     58: *
                     59: *> \param[in] UPLO
                     60: *> \verbatim
                     61: *>          UPLO is CHARACTER*1
                     62: *>          Specifies whether the upper or lower triangular part of the
                     63: *>          symmetric matrix A is stored:
                     64: *>          = 'U':  Upper triangular
                     65: *>          = 'L':  Lower triangular
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] N
                     69: *> \verbatim
                     70: *>          N is INTEGER
                     71: *>          The order of the matrix A.  N >= 0.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] NB
                     75: *> \verbatim
                     76: *>          NB is INTEGER
                     77: *>          The maximum number of columns of the matrix A that should be
                     78: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     79: *>          blocks.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[out] KB
                     83: *> \verbatim
                     84: *>          KB is INTEGER
                     85: *>          The number of columns of A that were actually factored.
                     86: *>          KB is either NB-1 or NB, or N if N <= NB.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in,out] A
                     90: *> \verbatim
                     91: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     92: *>          On entry, the symmetric matrix A.
                     93: *>            If UPLO = 'U': the leading N-by-N upper triangular part
                     94: *>            of A contains the upper triangular part of the matrix A,
                     95: *>            and the strictly lower triangular part of A is not
                     96: *>            referenced.
                     97: *>
                     98: *>            If UPLO = 'L': the leading N-by-N lower triangular part
                     99: *>            of A contains the lower triangular part of the matrix A,
                    100: *>            and the strictly upper triangular part of A is not
                    101: *>            referenced.
                    102: *>
                    103: *>          On exit, contains:
                    104: *>            a) ONLY diagonal elements of the symmetric block diagonal
                    105: *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                    106: *>               (superdiagonal (or subdiagonal) elements of D
                    107: *>                are stored on exit in array E), and
                    108: *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
                    109: *>               If UPLO = 'L': factor L in the subdiagonal part of A.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] LDA
                    113: *> \verbatim
                    114: *>          LDA is INTEGER
                    115: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[out] E
                    119: *> \verbatim
                    120: *>          E is COMPLEX*16 array, dimension (N)
                    121: *>          On exit, contains the superdiagonal (or subdiagonal)
                    122: *>          elements of the symmetric block diagonal matrix D
                    123: *>          with 1-by-1 or 2-by-2 diagonal blocks, where
                    124: *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
                    125: *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
                    126: *>
                    127: *>          NOTE: For 1-by-1 diagonal block D(k), where
                    128: *>          1 <= k <= N, the element E(k) is set to 0 in both
                    129: *>          UPLO = 'U' or UPLO = 'L' cases.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[out] IPIV
                    133: *> \verbatim
                    134: *>          IPIV is INTEGER array, dimension (N)
                    135: *>          IPIV describes the permutation matrix P in the factorization
                    136: *>          of matrix A as follows. The absolute value of IPIV(k)
                    137: *>          represents the index of row and column that were
                    138: *>          interchanged with the k-th row and column. The value of UPLO
                    139: *>          describes the order in which the interchanges were applied.
                    140: *>          Also, the sign of IPIV represents the block structure of
                    141: *>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
                    142: *>          diagonal blocks which correspond to 1 or 2 interchanges
                    143: *>          at each factorization step.
                    144: *>
                    145: *>          If UPLO = 'U',
                    146: *>          ( in factorization order, k decreases from N to 1 ):
                    147: *>            a) A single positive entry IPIV(k) > 0 means:
                    148: *>               D(k,k) is a 1-by-1 diagonal block.
                    149: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
                    150: *>               interchanged in the submatrix A(1:N,N-KB+1:N);
                    151: *>               If IPIV(k) = k, no interchange occurred.
                    152: *>
                    153: *>
                    154: *>            b) A pair of consecutive negative entries
                    155: *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
                    156: *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                    157: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
                    158: *>               1) If -IPIV(k) != k, rows and columns
                    159: *>                  k and -IPIV(k) were interchanged
                    160: *>                  in the matrix A(1:N,N-KB+1:N).
                    161: *>                  If -IPIV(k) = k, no interchange occurred.
                    162: *>               2) If -IPIV(k-1) != k-1, rows and columns
                    163: *>                  k-1 and -IPIV(k-1) were interchanged
                    164: *>                  in the submatrix A(1:N,N-KB+1:N).
                    165: *>                  If -IPIV(k-1) = k-1, no interchange occurred.
                    166: *>
                    167: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.
                    168: *>
                    169: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
                    170: *>
                    171: *>          If UPLO = 'L',
                    172: *>          ( in factorization order, k increases from 1 to N ):
                    173: *>            a) A single positive entry IPIV(k) > 0 means:
                    174: *>               D(k,k) is a 1-by-1 diagonal block.
                    175: *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
                    176: *>               interchanged in the submatrix A(1:N,1:KB).
                    177: *>               If IPIV(k) = k, no interchange occurred.
                    178: *>
                    179: *>            b) A pair of consecutive negative entries
                    180: *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
                    181: *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                    182: *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
                    183: *>               1) If -IPIV(k) != k, rows and columns
                    184: *>                  k and -IPIV(k) were interchanged
                    185: *>                  in the submatrix A(1:N,1:KB).
                    186: *>                  If -IPIV(k) = k, no interchange occurred.
                    187: *>               2) If -IPIV(k+1) != k+1, rows and columns
                    188: *>                  k-1 and -IPIV(k-1) were interchanged
                    189: *>                  in the submatrix A(1:N,1:KB).
                    190: *>                  If -IPIV(k+1) = k+1, no interchange occurred.
                    191: *>
                    192: *>            c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.
                    193: *>
                    194: *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[out] W
                    198: *> \verbatim
                    199: *>          W is COMPLEX*16 array, dimension (LDW,NB)
                    200: *> \endverbatim
                    201: *>
                    202: *> \param[in] LDW
                    203: *> \verbatim
                    204: *>          LDW is INTEGER
                    205: *>          The leading dimension of the array W.  LDW >= max(1,N).
                    206: *> \endverbatim
                    207: *>
                    208: *> \param[out] INFO
                    209: *> \verbatim
                    210: *>          INFO is INTEGER
                    211: *>          = 0: successful exit
                    212: *>
                    213: *>          < 0: If INFO = -k, the k-th argument had an illegal value
                    214: *>
                    215: *>          > 0: If INFO = k, the matrix A is singular, because:
                    216: *>                 If UPLO = 'U': column k in the upper
                    217: *>                 triangular part of A contains all zeros.
                    218: *>                 If UPLO = 'L': column k in the lower
                    219: *>                 triangular part of A contains all zeros.
                    220: *>
                    221: *>               Therefore D(k,k) is exactly zero, and superdiagonal
                    222: *>               elements of column k of U (or subdiagonal elements of
                    223: *>               column k of L ) are all zeros. The factorization has
                    224: *>               been completed, but the block diagonal matrix D is
                    225: *>               exactly singular, and division by zero will occur if
                    226: *>               it is used to solve a system of equations.
                    227: *>
                    228: *>               NOTE: INFO only stores the first occurrence of
                    229: *>               a singularity, any subsequent occurrence of singularity
                    230: *>               is not stored in INFO even though the factorization
                    231: *>               always completes.
                    232: *> \endverbatim
                    233: *
                    234: *  Authors:
                    235: *  ========
                    236: *
                    237: *> \author Univ. of Tennessee
                    238: *> \author Univ. of California Berkeley
                    239: *> \author Univ. of Colorado Denver
                    240: *> \author NAG Ltd.
                    241: *
                    242: *> \date December 2016
                    243: *
                    244: *> \ingroup complex16SYcomputational
                    245: *
                    246: *> \par Contributors:
                    247: *  ==================
                    248: *>
                    249: *> \verbatim
                    250: *>
                    251: *>  December 2016,  Igor Kozachenko,
                    252: *>                  Computer Science Division,
                    253: *>                  University of California, Berkeley
                    254: *>
                    255: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                    256: *>                  School of Mathematics,
                    257: *>                  University of Manchester
                    258: *>
                    259: *> \endverbatim
                    260: *
                    261: *  =====================================================================
                    262:       SUBROUTINE ZLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
                    263:      $                      INFO )
                    264: *
                    265: *  -- LAPACK computational routine (version 3.7.0) --
                    266: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    267: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    268: *     December 2016
                    269: *
                    270: *     .. Scalar Arguments ..
                    271:       CHARACTER          UPLO
                    272:       INTEGER            INFO, KB, LDA, LDW, N, NB
                    273: *     ..
                    274: *     .. Array Arguments ..
                    275:       INTEGER            IPIV( * )
                    276:       COMPLEX*16         A( LDA, * ), E( * ), W( LDW, * )
                    277: *     ..
                    278: *
                    279: *  =====================================================================
                    280: *
                    281: *     .. Parameters ..
                    282:       DOUBLE PRECISION   ZERO, ONE
                    283:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    284:       DOUBLE PRECISION   EIGHT, SEVTEN
                    285:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
                    286:       COMPLEX*16         CONE, CZERO
                    287:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
                    288:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
                    289: *     ..
                    290: *     .. Local Scalars ..
                    291:       LOGICAL            DONE
                    292:       INTEGER            IMAX, ITEMP, J, JB, JJ, JMAX, K, KK, KW, KKW,
                    293:      $                   KP, KSTEP, P, II
                    294:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, ROWMAX, SFMIN, DTEMP
                    295:       COMPLEX*16         D11, D12, D21, D22, R1, T, Z
                    296: *     ..
                    297: *     .. External Functions ..
                    298:       LOGICAL            LSAME
                    299:       INTEGER            IZAMAX
                    300:       DOUBLE PRECISION   DLAMCH
                    301:       EXTERNAL           LSAME, IZAMAX, DLAMCH
                    302: *     ..
                    303: *     .. External Subroutines ..
                    304:       EXTERNAL           ZCOPY, ZGEMM, ZGEMV, ZSCAL, ZSWAP
                    305: *     ..
                    306: *     .. Intrinsic Functions ..
                    307:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN, SQRT
                    308: *     ..
                    309: *     .. Statement Functions ..
                    310:       DOUBLE PRECISION   CABS1
                    311: *     ..
                    312: *     .. Statement Function definitions ..
                    313:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
                    314: *     ..
                    315: *     .. Executable Statements ..
                    316: *
                    317:       INFO = 0
                    318: *
                    319: *     Initialize ALPHA for use in choosing pivot block size.
                    320: *
                    321:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
                    322: *
                    323: *     Compute machine safe minimum
                    324: *
                    325:       SFMIN = DLAMCH( 'S' )
                    326: *
                    327:       IF( LSAME( UPLO, 'U' ) ) THEN
                    328: *
                    329: *        Factorize the trailing columns of A using the upper triangle
                    330: *        of A and working backwards, and compute the matrix W = U12*D
                    331: *        for use in updating A11
                    332: *
1.4     ! bertrand  333: *        Initialize the first entry of array E, where superdiagonal
1.1       bertrand  334: *        elements of D are stored
                    335: *
                    336:          E( 1 ) = CZERO
                    337: *
                    338: *        K is the main loop index, decreasing from N in steps of 1 or 2
                    339: *
                    340:          K = N
                    341:    10    CONTINUE
                    342: *
                    343: *        KW is the column of W which corresponds to column K of A
                    344: *
                    345:          KW = NB + K - N
                    346: *
                    347: *        Exit from loop
                    348: *
                    349:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
                    350:      $      GO TO 30
                    351: *
                    352:          KSTEP = 1
                    353:          P = K
                    354: *
                    355: *        Copy column K of A to column KW of W and update it
                    356: *
                    357:          CALL ZCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
                    358:          IF( K.LT.N )
                    359:      $      CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ),
                    360:      $                  LDA, W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
                    361: *
                    362: *        Determine rows and columns to be interchanged and whether
                    363: *        a 1-by-1 or 2-by-2 pivot block will be used
                    364: *
                    365:          ABSAKK = CABS1( W( K, KW ) )
                    366: *
                    367: *        IMAX is the row-index of the largest off-diagonal element in
                    368: *        column K, and COLMAX is its absolute value.
                    369: *        Determine both COLMAX and IMAX.
                    370: *
                    371:          IF( K.GT.1 ) THEN
                    372:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
                    373:             COLMAX = CABS1( W( IMAX, KW ) )
                    374:          ELSE
                    375:             COLMAX = ZERO
                    376:          END IF
                    377: *
                    378:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    379: *
                    380: *           Column K is zero or underflow: set INFO and continue
                    381: *
                    382:             IF( INFO.EQ.0 )
                    383:      $         INFO = K
                    384:             KP = K
                    385:             CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
                    386: *
                    387: *           Set E( K ) to zero
                    388: *
                    389:             IF( K.GT.1 )
                    390:      $         E( K ) = CZERO
                    391: *
                    392:          ELSE
                    393: *
                    394: *           ============================================================
                    395: *
                    396: *           Test for interchange
                    397: *
                    398: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
                    399: *           (used to handle NaN and Inf)
                    400: *
                    401:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
                    402: *
                    403: *              no interchange, use 1-by-1 pivot block
                    404: *
                    405:                KP = K
                    406: *
                    407:             ELSE
                    408: *
                    409:                DONE = .FALSE.
                    410: *
                    411: *              Loop until pivot found
                    412: *
                    413:    12          CONTINUE
                    414: *
                    415: *                 Begin pivot search loop body
                    416: *
                    417: *
                    418: *                 Copy column IMAX to column KW-1 of W and update it
                    419: *
                    420:                   CALL ZCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
                    421:                   CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
                    422:      $                        W( IMAX+1, KW-1 ), 1 )
                    423: *
                    424:                   IF( K.LT.N )
                    425:      $               CALL ZGEMV( 'No transpose', K, N-K, -CONE,
                    426:      $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
                    427:      $                           CONE, W( 1, KW-1 ), 1 )
                    428: *
                    429: *                 JMAX is the column-index of the largest off-diagonal
                    430: *                 element in row IMAX, and ROWMAX is its absolute value.
                    431: *                 Determine both ROWMAX and JMAX.
                    432: *
                    433:                   IF( IMAX.NE.K ) THEN
                    434:                      JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
                    435:      $                                     1 )
                    436:                      ROWMAX = CABS1( W( JMAX, KW-1 ) )
                    437:                   ELSE
                    438:                      ROWMAX = ZERO
                    439:                   END IF
                    440: *
                    441:                   IF( IMAX.GT.1 ) THEN
                    442:                      ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
                    443:                      DTEMP = CABS1( W( ITEMP, KW-1 ) )
                    444:                      IF( DTEMP.GT.ROWMAX ) THEN
                    445:                         ROWMAX = DTEMP
                    446:                         JMAX = ITEMP
                    447:                      END IF
                    448:                   END IF
                    449: *
                    450: *                 Equivalent to testing for
                    451: *                 CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX
                    452: *                 (used to handle NaN and Inf)
                    453: *
                    454:                   IF( .NOT.(CABS1( W( IMAX, KW-1 ) ).LT.ALPHA*ROWMAX ) )
                    455:      $            THEN
                    456: *
                    457: *                    interchange rows and columns K and IMAX,
                    458: *                    use 1-by-1 pivot block
                    459: *
                    460:                      KP = IMAX
                    461: *
                    462: *                    copy column KW-1 of W to column KW of W
                    463: *
                    464:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
                    465: *
                    466:                      DONE = .TRUE.
                    467: *
                    468: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
                    469: *                 (used to handle NaN and Inf)
                    470: *
                    471:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
                    472:      $            THEN
                    473: *
                    474: *                    interchange rows and columns K-1 and IMAX,
                    475: *                    use 2-by-2 pivot block
                    476: *
                    477:                      KP = IMAX
                    478:                      KSTEP = 2
                    479:                      DONE = .TRUE.
                    480:                   ELSE
                    481: *
                    482: *                    Pivot not found: set params and repeat
                    483: *
                    484:                      P = IMAX
                    485:                      COLMAX = ROWMAX
                    486:                      IMAX = JMAX
                    487: *
                    488: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
                    489: *
                    490:                      CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
                    491: *
                    492:                   END IF
                    493: *
                    494: *                 End pivot search loop body
                    495: *
                    496:                IF( .NOT. DONE ) GOTO 12
                    497: *
                    498:             END IF
                    499: *
                    500: *           ============================================================
                    501: *
                    502:             KK = K - KSTEP + 1
                    503: *
                    504: *           KKW is the column of W which corresponds to column KK of A
                    505: *
                    506:             KKW = NB + KK - N
                    507: *
                    508:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
                    509: *
                    510: *              Copy non-updated column K to column P
                    511: *
                    512:                CALL ZCOPY( K-P, A( P+1, K ), 1, A( P, P+1 ), LDA )
                    513:                CALL ZCOPY( P, A( 1, K ), 1, A( 1, P ), 1 )
                    514: *
                    515: *              Interchange rows K and P in last N-K+1 columns of A
                    516: *              and last N-K+2 columns of W
                    517: *
                    518:                CALL ZSWAP( N-K+1, A( K, K ), LDA, A( P, K ), LDA )
                    519:                CALL ZSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ), LDW )
                    520:             END IF
                    521: *
                    522: *           Updated column KP is already stored in column KKW of W
                    523: *
                    524:             IF( KP.NE.KK ) THEN
                    525: *
                    526: *              Copy non-updated column KK to column KP
                    527: *
                    528:                A( KP, K ) = A( KK, K )
                    529:                CALL ZCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
                    530:      $                     LDA )
                    531:                CALL ZCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
                    532: *
                    533: *              Interchange rows KK and KP in last N-KK+1 columns
                    534: *              of A and W
                    535: *
                    536:                CALL ZSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
                    537:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
                    538:      $                     LDW )
                    539:             END IF
                    540: *
                    541:             IF( KSTEP.EQ.1 ) THEN
                    542: *
                    543: *              1-by-1 pivot block D(k): column KW of W now holds
                    544: *
                    545: *              W(k) = U(k)*D(k)
                    546: *
                    547: *              where U(k) is the k-th column of U
                    548: *
                    549: *              Store U(k) in column k of A
                    550: *
                    551:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
                    552:                IF( K.GT.1 ) THEN
                    553:                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
                    554:                      R1 = CONE / A( K, K )
                    555:                      CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
                    556:                   ELSE IF( A( K, K ).NE.CZERO ) THEN
                    557:                      DO 14 II = 1, K - 1
                    558:                         A( II, K ) = A( II, K ) / A( K, K )
                    559:    14                CONTINUE
                    560:                   END IF
                    561: *
                    562: *                 Store the superdiagonal element of D in array E
                    563: *
                    564:                   E( K ) = CZERO
                    565: *
                    566:                END IF
                    567: *
                    568:             ELSE
                    569: *
                    570: *              2-by-2 pivot block D(k): columns KW and KW-1 of W now
                    571: *              hold
                    572: *
                    573: *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
                    574: *
                    575: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
                    576: *              of U
                    577: *
                    578:                IF( K.GT.2 ) THEN
                    579: *
                    580: *                 Store U(k) and U(k-1) in columns k and k-1 of A
                    581: *
                    582:                   D12 = W( K-1, KW )
                    583:                   D11 = W( K, KW ) / D12
                    584:                   D22 = W( K-1, KW-1 ) / D12
                    585:                   T = CONE / ( D11*D22-CONE )
                    586:                   DO 20 J = 1, K - 2
                    587:                      A( J, K-1 ) = T*( (D11*W( J, KW-1 )-W( J, KW ) ) /
                    588:      $                             D12 )
                    589:                      A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
                    590:      $                           D12 )
                    591:    20             CONTINUE
                    592:                END IF
                    593: *
                    594: *              Copy diagonal elements of D(K) to A,
                    595: *              copy superdiagonal element of D(K) to E(K) and
                    596: *              ZERO out superdiagonal entry of A
                    597: *
                    598:                A( K-1, K-1 ) = W( K-1, KW-1 )
                    599:                A( K-1, K ) = CZERO
                    600:                A( K, K ) = W( K, KW )
                    601:                E( K ) = W( K-1, KW )
                    602:                E( K-1 ) = CZERO
                    603: *
                    604:             END IF
                    605: *
                    606: *           End column K is nonsingular
                    607: *
                    608:          END IF
                    609: *
                    610: *        Store details of the interchanges in IPIV
                    611: *
                    612:          IF( KSTEP.EQ.1 ) THEN
                    613:             IPIV( K ) = KP
                    614:          ELSE
                    615:             IPIV( K ) = -P
                    616:             IPIV( K-1 ) = -KP
                    617:          END IF
                    618: *
                    619: *        Decrease K and return to the start of the main loop
                    620: *
                    621:          K = K - KSTEP
                    622:          GO TO 10
                    623: *
                    624:    30    CONTINUE
                    625: *
                    626: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
                    627: *
                    628: *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
                    629: *
                    630: *        computing blocks of NB columns at a time
                    631: *
                    632:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
                    633:             JB = MIN( NB, K-J+1 )
                    634: *
                    635: *           Update the upper triangle of the diagonal block
                    636: *
                    637:             DO 40 JJ = J, J + JB - 1
                    638:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
                    639:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
                    640:      $                     A( J, JJ ), 1 )
                    641:    40       CONTINUE
                    642: *
                    643: *           Update the rectangular superdiagonal block
                    644: *
                    645:             IF( J.GE.2 )
                    646:      $         CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB,
                    647:      $                     N-K, -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ),
                    648:      $                     LDW, CONE, A( 1, J ), LDA )
                    649:    50    CONTINUE
                    650: *
                    651: *        Set KB to the number of columns factorized
                    652: *
                    653:          KB = N - K
                    654: *
                    655:       ELSE
                    656: *
                    657: *        Factorize the leading columns of A using the lower triangle
                    658: *        of A and working forwards, and compute the matrix W = L21*D
                    659: *        for use in updating A22
                    660: *
1.4     ! bertrand  661: *        Initialize the unused last entry of the subdiagonal array E.
1.1       bertrand  662: *
                    663:          E( N ) = CZERO
                    664: *
                    665: *        K is the main loop index, increasing from 1 in steps of 1 or 2
                    666: *
                    667:          K = 1
                    668:    70   CONTINUE
                    669: *
                    670: *        Exit from loop
                    671: *
                    672:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
                    673:      $      GO TO 90
                    674: *
                    675:          KSTEP = 1
                    676:          P = K
                    677: *
                    678: *        Copy column K of A to column K of W and update it
                    679: *
                    680:          CALL ZCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
                    681:          IF( K.GT.1 )
                    682:      $      CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
                    683:      $                  LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
                    684: *
                    685: *        Determine rows and columns to be interchanged and whether
                    686: *        a 1-by-1 or 2-by-2 pivot block will be used
                    687: *
                    688:          ABSAKK = CABS1( W( K, K ) )
                    689: *
                    690: *        IMAX is the row-index of the largest off-diagonal element in
                    691: *        column K, and COLMAX is its absolute value.
                    692: *        Determine both COLMAX and IMAX.
                    693: *
                    694:          IF( K.LT.N ) THEN
                    695:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
                    696:             COLMAX = CABS1( W( IMAX, K ) )
                    697:          ELSE
                    698:             COLMAX = ZERO
                    699:          END IF
                    700: *
                    701:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    702: *
                    703: *           Column K is zero or underflow: set INFO and continue
                    704: *
                    705:             IF( INFO.EQ.0 )
                    706:      $         INFO = K
                    707:             KP = K
                    708:             CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
                    709: *
                    710: *           Set E( K ) to zero
                    711: *
                    712:             IF( K.LT.N )
                    713:      $         E( K ) = CZERO
                    714: *
                    715:          ELSE
                    716: *
                    717: *           ============================================================
                    718: *
                    719: *           Test for interchange
                    720: *
                    721: *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
                    722: *           (used to handle NaN and Inf)
                    723: *
                    724:             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
                    725: *
                    726: *              no interchange, use 1-by-1 pivot block
                    727: *
                    728:                KP = K
                    729: *
                    730:             ELSE
                    731: *
                    732:                DONE = .FALSE.
                    733: *
                    734: *              Loop until pivot found
                    735: *
                    736:    72          CONTINUE
                    737: *
                    738: *                 Begin pivot search loop body
                    739: *
                    740: *
                    741: *                 Copy column IMAX to column K+1 of W and update it
                    742: *
                    743:                   CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
                    744:                   CALL ZCOPY( N-IMAX+1, A( IMAX, IMAX ), 1,
                    745:      $                        W( IMAX, K+1 ), 1 )
                    746:                   IF( K.GT.1 )
                    747:      $               CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
                    748:      $                           A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
                    749:      $                           CONE, W( K, K+1 ), 1 )
                    750: *
                    751: *                 JMAX is the column-index of the largest off-diagonal
                    752: *                 element in row IMAX, and ROWMAX is its absolute value.
                    753: *                 Determine both ROWMAX and JMAX.
                    754: *
                    755:                   IF( IMAX.NE.K ) THEN
                    756:                      JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
                    757:                      ROWMAX = CABS1( W( JMAX, K+1 ) )
                    758:                   ELSE
                    759:                      ROWMAX = ZERO
                    760:                   END IF
                    761: *
                    762:                   IF( IMAX.LT.N ) THEN
                    763:                      ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
                    764:                      DTEMP = CABS1( W( ITEMP, K+1 ) )
                    765:                      IF( DTEMP.GT.ROWMAX ) THEN
                    766:                         ROWMAX = DTEMP
                    767:                         JMAX = ITEMP
                    768:                      END IF
                    769:                   END IF
                    770: *
                    771: *                 Equivalent to testing for
                    772: *                 CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX
                    773: *                 (used to handle NaN and Inf)
                    774: *
                    775:                   IF( .NOT.( CABS1( W( IMAX, K+1 ) ).LT.ALPHA*ROWMAX ) )
                    776:      $            THEN
                    777: *
                    778: *                    interchange rows and columns K and IMAX,
                    779: *                    use 1-by-1 pivot block
                    780: *
                    781:                      KP = IMAX
                    782: *
                    783: *                    copy column K+1 of W to column K of W
                    784: *
                    785:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
                    786: *
                    787:                      DONE = .TRUE.
                    788: *
                    789: *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
                    790: *                 (used to handle NaN and Inf)
                    791: *
                    792:                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
                    793:      $            THEN
                    794: *
                    795: *                    interchange rows and columns K+1 and IMAX,
                    796: *                    use 2-by-2 pivot block
                    797: *
                    798:                      KP = IMAX
                    799:                      KSTEP = 2
                    800:                      DONE = .TRUE.
                    801:                   ELSE
                    802: *
                    803: *                    Pivot not found: set params and repeat
                    804: *
                    805:                      P = IMAX
                    806:                      COLMAX = ROWMAX
                    807:                      IMAX = JMAX
                    808: *
                    809: *                    Copy updated JMAXth (next IMAXth) column to Kth of W
                    810: *
                    811:                      CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
                    812: *
                    813:                   END IF
                    814: *
                    815: *                 End pivot search loop body
                    816: *
                    817:                IF( .NOT. DONE ) GOTO 72
                    818: *
                    819:             END IF
                    820: *
                    821: *           ============================================================
                    822: *
                    823:             KK = K + KSTEP - 1
                    824: *
                    825:             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
                    826: *
                    827: *              Copy non-updated column K to column P
                    828: *
                    829:                CALL ZCOPY( P-K, A( K, K ), 1, A( P, K ), LDA )
                    830:                CALL ZCOPY( N-P+1, A( P, K ), 1, A( P, P ), 1 )
                    831: *
                    832: *              Interchange rows K and P in first K columns of A
                    833: *              and first K+1 columns of W
                    834: *
                    835:                CALL ZSWAP( K, A( K, 1 ), LDA, A( P, 1 ), LDA )
                    836:                CALL ZSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
                    837:             END IF
                    838: *
                    839: *           Updated column KP is already stored in column KK of W
                    840: *
                    841:             IF( KP.NE.KK ) THEN
                    842: *
                    843: *              Copy non-updated column KK to column KP
                    844: *
                    845:                A( KP, K ) = A( KK, K )
                    846:                CALL ZCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
                    847:                CALL ZCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
                    848: *
                    849: *              Interchange rows KK and KP in first KK columns of A and W
                    850: *
                    851:                CALL ZSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
                    852:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
                    853:             END IF
                    854: *
                    855:             IF( KSTEP.EQ.1 ) THEN
                    856: *
                    857: *              1-by-1 pivot block D(k): column k of W now holds
                    858: *
                    859: *              W(k) = L(k)*D(k)
                    860: *
                    861: *              where L(k) is the k-th column of L
                    862: *
                    863: *              Store L(k) in column k of A
                    864: *
                    865:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
                    866:                IF( K.LT.N ) THEN
                    867:                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
                    868:                      R1 = CONE / A( K, K )
                    869:                      CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
                    870:                   ELSE IF( A( K, K ).NE.CZERO ) THEN
                    871:                      DO 74 II = K + 1, N
                    872:                         A( II, K ) = A( II, K ) / A( K, K )
                    873:    74                CONTINUE
                    874:                   END IF
                    875: *
                    876: *                 Store the subdiagonal element of D in array E
                    877: *
                    878:                   E( K ) = CZERO
                    879: *
                    880:                END IF
                    881: *
                    882:             ELSE
                    883: *
                    884: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
                    885: *
                    886: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
                    887: *
                    888: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
                    889: *              of L
                    890: *
                    891:                IF( K.LT.N-1 ) THEN
                    892: *
                    893: *                 Store L(k) and L(k+1) in columns k and k+1 of A
                    894: *
                    895:                   D21 = W( K+1, K )
                    896:                   D11 = W( K+1, K+1 ) / D21
                    897:                   D22 = W( K, K ) / D21
                    898:                   T = CONE / ( D11*D22-CONE )
                    899:                   DO 80 J = K + 2, N
                    900:                      A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
                    901:      $                           D21 )
                    902:                      A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
                    903:      $                             D21 )
                    904:    80             CONTINUE
                    905:                END IF
                    906: *
                    907: *              Copy diagonal elements of D(K) to A,
                    908: *              copy subdiagonal element of D(K) to E(K) and
                    909: *              ZERO out subdiagonal entry of A
                    910: *
                    911:                A( K, K ) = W( K, K )
                    912:                A( K+1, K ) = CZERO
                    913:                A( K+1, K+1 ) = W( K+1, K+1 )
                    914:                E( K ) = W( K+1, K )
                    915:                E( K+1 ) = CZERO
                    916: *
                    917:             END IF
                    918: *
                    919: *           End column K is nonsingular
                    920: *
                    921:          END IF
                    922: *
                    923: *        Store details of the interchanges in IPIV
                    924: *
                    925:          IF( KSTEP.EQ.1 ) THEN
                    926:             IPIV( K ) = KP
                    927:          ELSE
                    928:             IPIV( K ) = -P
                    929:             IPIV( K+1 ) = -KP
                    930:          END IF
                    931: *
                    932: *        Increase K and return to the start of the main loop
                    933: *
                    934:          K = K + KSTEP
                    935:          GO TO 70
                    936: *
                    937:    90    CONTINUE
                    938: *
                    939: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
                    940: *
                    941: *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
                    942: *
                    943: *        computing blocks of NB columns at a time
                    944: *
                    945:          DO 110 J = K, N, NB
                    946:             JB = MIN( NB, N-J+1 )
                    947: *
                    948: *           Update the lower triangle of the diagonal block
                    949: *
                    950:             DO 100 JJ = J, J + JB - 1
                    951:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
                    952:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
                    953:      $                     A( JJ, JJ ), 1 )
                    954:   100       CONTINUE
                    955: *
                    956: *           Update the rectangular subdiagonal block
                    957: *
                    958:             IF( J+JB.LE.N )
                    959:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
                    960:      $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
                    961:      $                     LDW, CONE, A( J+JB, J ), LDA )
                    962:   110    CONTINUE
                    963: *
                    964: *        Set KB to the number of columns factorized
                    965: *
                    966:          KB = K - 1
                    967: *
                    968:       END IF
                    969: *
                    970:       RETURN
                    971: *
                    972: *     End of ZLASYF_RK
                    973: *
                    974:       END

CVSweb interface <joel.bertrand@systella.fr>