File:  [local] / rpl / lapack / lapack / zlaqr3.f
Revision 1.21: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:30 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLAQR3 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAQR3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
   22: *                          IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
   23: *                          NV, WV, LDWV, WORK, LWORK )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
   27: *      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
   28: *       LOGICAL            WANTT, WANTZ
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
   32: *      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *>    Aggressive early deflation:
   42: *>
   43: *>    ZLAQR3 accepts as input an upper Hessenberg matrix
   44: *>    H and performs an unitary similarity transformation
   45: *>    designed to detect and deflate fully converged eigenvalues from
   46: *>    a trailing principal submatrix.  On output H has been over-
   47: *>    written by a new Hessenberg matrix that is a perturbation of
   48: *>    an unitary similarity transformation of H.  It is to be
   49: *>    hoped that the final version of H has many zero subdiagonal
   50: *>    entries.
   51: *>
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] WANTT
   58: *> \verbatim
   59: *>          WANTT is LOGICAL
   60: *>          If .TRUE., then the Hessenberg matrix H is fully updated
   61: *>          so that the triangular Schur factor may be
   62: *>          computed (in cooperation with the calling subroutine).
   63: *>          If .FALSE., then only enough of H is updated to preserve
   64: *>          the eigenvalues.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] WANTZ
   68: *> \verbatim
   69: *>          WANTZ is LOGICAL
   70: *>          If .TRUE., then the unitary matrix Z is updated so
   71: *>          so that the unitary Schur factor may be computed
   72: *>          (in cooperation with the calling subroutine).
   73: *>          If .FALSE., then Z is not referenced.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>          The order of the matrix H and (if WANTZ is .TRUE.) the
   80: *>          order of the unitary matrix Z.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] KTOP
   84: *> \verbatim
   85: *>          KTOP is INTEGER
   86: *>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
   87: *>          KBOT and KTOP together determine an isolated block
   88: *>          along the diagonal of the Hessenberg matrix.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] KBOT
   92: *> \verbatim
   93: *>          KBOT is INTEGER
   94: *>          It is assumed without a check that either
   95: *>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
   96: *>          determine an isolated block along the diagonal of the
   97: *>          Hessenberg matrix.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] NW
  101: *> \verbatim
  102: *>          NW is INTEGER
  103: *>          Deflation window size.  1 <= NW <= (KBOT-KTOP+1).
  104: *> \endverbatim
  105: *>
  106: *> \param[in,out] H
  107: *> \verbatim
  108: *>          H is COMPLEX*16 array, dimension (LDH,N)
  109: *>          On input the initial N-by-N section of H stores the
  110: *>          Hessenberg matrix undergoing aggressive early deflation.
  111: *>          On output H has been transformed by a unitary
  112: *>          similarity transformation, perturbed, and the returned
  113: *>          to Hessenberg form that (it is to be hoped) has some
  114: *>          zero subdiagonal entries.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDH
  118: *> \verbatim
  119: *>          LDH is INTEGER
  120: *>          Leading dimension of H just as declared in the calling
  121: *>          subroutine.  N <= LDH
  122: *> \endverbatim
  123: *>
  124: *> \param[in] ILOZ
  125: *> \verbatim
  126: *>          ILOZ is INTEGER
  127: *> \endverbatim
  128: *>
  129: *> \param[in] IHIZ
  130: *> \verbatim
  131: *>          IHIZ is INTEGER
  132: *>          Specify the rows of Z to which transformations must be
  133: *>          applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
  134: *> \endverbatim
  135: *>
  136: *> \param[in,out] Z
  137: *> \verbatim
  138: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
  139: *>          IF WANTZ is .TRUE., then on output, the unitary
  140: *>          similarity transformation mentioned above has been
  141: *>          accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
  142: *>          If WANTZ is .FALSE., then Z is unreferenced.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LDZ
  146: *> \verbatim
  147: *>          LDZ is INTEGER
  148: *>          The leading dimension of Z just as declared in the
  149: *>          calling subroutine.  1 <= LDZ.
  150: *> \endverbatim
  151: *>
  152: *> \param[out] NS
  153: *> \verbatim
  154: *>          NS is INTEGER
  155: *>          The number of unconverged (ie approximate) eigenvalues
  156: *>          returned in SR and SI that may be used as shifts by the
  157: *>          calling subroutine.
  158: *> \endverbatim
  159: *>
  160: *> \param[out] ND
  161: *> \verbatim
  162: *>          ND is INTEGER
  163: *>          The number of converged eigenvalues uncovered by this
  164: *>          subroutine.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] SH
  168: *> \verbatim
  169: *>          SH is COMPLEX*16 array, dimension (KBOT)
  170: *>          On output, approximate eigenvalues that may
  171: *>          be used for shifts are stored in SH(KBOT-ND-NS+1)
  172: *>          through SR(KBOT-ND).  Converged eigenvalues are
  173: *>          stored in SH(KBOT-ND+1) through SH(KBOT).
  174: *> \endverbatim
  175: *>
  176: *> \param[out] V
  177: *> \verbatim
  178: *>          V is COMPLEX*16 array, dimension (LDV,NW)
  179: *>          An NW-by-NW work array.
  180: *> \endverbatim
  181: *>
  182: *> \param[in] LDV
  183: *> \verbatim
  184: *>          LDV is INTEGER
  185: *>          The leading dimension of V just as declared in the
  186: *>          calling subroutine.  NW <= LDV
  187: *> \endverbatim
  188: *>
  189: *> \param[in] NH
  190: *> \verbatim
  191: *>          NH is INTEGER
  192: *>          The number of columns of T.  NH >= NW.
  193: *> \endverbatim
  194: *>
  195: *> \param[out] T
  196: *> \verbatim
  197: *>          T is COMPLEX*16 array, dimension (LDT,NW)
  198: *> \endverbatim
  199: *>
  200: *> \param[in] LDT
  201: *> \verbatim
  202: *>          LDT is INTEGER
  203: *>          The leading dimension of T just as declared in the
  204: *>          calling subroutine.  NW <= LDT
  205: *> \endverbatim
  206: *>
  207: *> \param[in] NV
  208: *> \verbatim
  209: *>          NV is INTEGER
  210: *>          The number of rows of work array WV available for
  211: *>          workspace.  NV >= NW.
  212: *> \endverbatim
  213: *>
  214: *> \param[out] WV
  215: *> \verbatim
  216: *>          WV is COMPLEX*16 array, dimension (LDWV,NW)
  217: *> \endverbatim
  218: *>
  219: *> \param[in] LDWV
  220: *> \verbatim
  221: *>          LDWV is INTEGER
  222: *>          The leading dimension of W just as declared in the
  223: *>          calling subroutine.  NW <= LDV
  224: *> \endverbatim
  225: *>
  226: *> \param[out] WORK
  227: *> \verbatim
  228: *>          WORK is COMPLEX*16 array, dimension (LWORK)
  229: *>          On exit, WORK(1) is set to an estimate of the optimal value
  230: *>          of LWORK for the given values of N, NW, KTOP and KBOT.
  231: *> \endverbatim
  232: *>
  233: *> \param[in] LWORK
  234: *> \verbatim
  235: *>          LWORK is INTEGER
  236: *>          The dimension of the work array WORK.  LWORK = 2*NW
  237: *>          suffices, but greater efficiency may result from larger
  238: *>          values of LWORK.
  239: *>
  240: *>          If LWORK = -1, then a workspace query is assumed; ZLAQR3
  241: *>          only estimates the optimal workspace size for the given
  242: *>          values of N, NW, KTOP and KBOT.  The estimate is returned
  243: *>          in WORK(1).  No error message related to LWORK is issued
  244: *>          by XERBLA.  Neither H nor Z are accessed.
  245: *> \endverbatim
  246: *
  247: *  Authors:
  248: *  ========
  249: *
  250: *> \author Univ. of Tennessee
  251: *> \author Univ. of California Berkeley
  252: *> \author Univ. of Colorado Denver
  253: *> \author NAG Ltd.
  254: *
  255: *> \ingroup complex16OTHERauxiliary
  256: *
  257: *> \par Contributors:
  258: *  ==================
  259: *>
  260: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  261: *>       University of Kansas, USA
  262: *>
  263: *  =====================================================================
  264:       SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  265:      $                   IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
  266:      $                   NV, WV, LDWV, WORK, LWORK )
  267: *
  268: *  -- LAPACK auxiliary routine --
  269: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  270: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  271: *
  272: *     .. Scalar Arguments ..
  273:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
  274:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
  275:       LOGICAL            WANTT, WANTZ
  276: *     ..
  277: *     .. Array Arguments ..
  278:       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
  279:      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
  280: *     ..
  281: *
  282: *  ================================================================
  283: *
  284: *     .. Parameters ..
  285:       COMPLEX*16         ZERO, ONE
  286:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
  287:      $                   ONE = ( 1.0d0, 0.0d0 ) )
  288:       DOUBLE PRECISION   RZERO, RONE
  289:       PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0 )
  290: *     ..
  291: *     .. Local Scalars ..
  292:       COMPLEX*16         BETA, CDUM, S, TAU
  293:       DOUBLE PRECISION   FOO, SAFMAX, SAFMIN, SMLNUM, ULP
  294:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
  295:      $                   KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
  296:      $                   LWKOPT, NMIN
  297: *     ..
  298: *     .. External Functions ..
  299:       DOUBLE PRECISION   DLAMCH
  300:       INTEGER            ILAENV
  301:       EXTERNAL           DLAMCH, ILAENV
  302: *     ..
  303: *     .. External Subroutines ..
  304:       EXTERNAL           DLABAD, ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR,
  305:      $                   ZLAQR4, ZLARF, ZLARFG, ZLASET, ZTREXC, ZUNMHR
  306: *     ..
  307: *     .. Intrinsic Functions ..
  308:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN
  309: *     ..
  310: *     .. Statement Functions ..
  311:       DOUBLE PRECISION   CABS1
  312: *     ..
  313: *     .. Statement Function definitions ..
  314:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  315: *     ..
  316: *     .. Executable Statements ..
  317: *
  318: *     ==== Estimate optimal workspace. ====
  319: *
  320:       JW = MIN( NW, KBOT-KTOP+1 )
  321:       IF( JW.LE.2 ) THEN
  322:          LWKOPT = 1
  323:       ELSE
  324: *
  325: *        ==== Workspace query call to ZGEHRD ====
  326: *
  327:          CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
  328:          LWK1 = INT( WORK( 1 ) )
  329: *
  330: *        ==== Workspace query call to ZUNMHR ====
  331: *
  332:          CALL ZUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
  333:      $                WORK, -1, INFO )
  334:          LWK2 = INT( WORK( 1 ) )
  335: *
  336: *        ==== Workspace query call to ZLAQR4 ====
  337: *
  338:          CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH, 1, JW, V,
  339:      $                LDV, WORK, -1, INFQR )
  340:          LWK3 = INT( WORK( 1 ) )
  341: *
  342: *        ==== Optimal workspace ====
  343: *
  344:          LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
  345:       END IF
  346: *
  347: *     ==== Quick return in case of workspace query. ====
  348: *
  349:       IF( LWORK.EQ.-1 ) THEN
  350:          WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  351:          RETURN
  352:       END IF
  353: *
  354: *     ==== Nothing to do ...
  355: *     ... for an empty active block ... ====
  356:       NS = 0
  357:       ND = 0
  358:       WORK( 1 ) = ONE
  359:       IF( KTOP.GT.KBOT )
  360:      $   RETURN
  361: *     ... nor for an empty deflation window. ====
  362:       IF( NW.LT.1 )
  363:      $   RETURN
  364: *
  365: *     ==== Machine constants ====
  366: *
  367:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  368:       SAFMAX = RONE / SAFMIN
  369:       CALL DLABAD( SAFMIN, SAFMAX )
  370:       ULP = DLAMCH( 'PRECISION' )
  371:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
  372: *
  373: *     ==== Setup deflation window ====
  374: *
  375:       JW = MIN( NW, KBOT-KTOP+1 )
  376:       KWTOP = KBOT - JW + 1
  377:       IF( KWTOP.EQ.KTOP ) THEN
  378:          S = ZERO
  379:       ELSE
  380:          S = H( KWTOP, KWTOP-1 )
  381:       END IF
  382: *
  383:       IF( KBOT.EQ.KWTOP ) THEN
  384: *
  385: *        ==== 1-by-1 deflation window: not much to do ====
  386: *
  387:          SH( KWTOP ) = H( KWTOP, KWTOP )
  388:          NS = 1
  389:          ND = 0
  390:          IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
  391:      $       KWTOP ) ) ) ) THEN
  392:             NS = 0
  393:             ND = 1
  394:             IF( KWTOP.GT.KTOP )
  395:      $         H( KWTOP, KWTOP-1 ) = ZERO
  396:          END IF
  397:          WORK( 1 ) = ONE
  398:          RETURN
  399:       END IF
  400: *
  401: *     ==== Convert to spike-triangular form.  (In case of a
  402: *     .    rare QR failure, this routine continues to do
  403: *     .    aggressive early deflation using that part of
  404: *     .    the deflation window that converged using INFQR
  405: *     .    here and there to keep track.) ====
  406: *
  407:       CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
  408:       CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
  409: *
  410:       CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
  411:       NMIN = ILAENV( 12, 'ZLAQR3', 'SV', JW, 1, JW, LWORK )
  412:       IF( JW.GT.NMIN ) THEN
  413:          CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
  414:      $                JW, V, LDV, WORK, LWORK, INFQR )
  415:       ELSE
  416:          CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
  417:      $                JW, V, LDV, INFQR )
  418:       END IF
  419: *
  420: *     ==== Deflation detection loop ====
  421: *
  422:       NS = JW
  423:       ILST = INFQR + 1
  424:       DO 10 KNT = INFQR + 1, JW
  425: *
  426: *        ==== Small spike tip deflation test ====
  427: *
  428:          FOO = CABS1( T( NS, NS ) )
  429:          IF( FOO.EQ.RZERO )
  430:      $      FOO = CABS1( S )
  431:          IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
  432:      $        THEN
  433: *
  434: *           ==== One more converged eigenvalue ====
  435: *
  436:             NS = NS - 1
  437:          ELSE
  438: *
  439: *           ==== One undeflatable eigenvalue.  Move it up out of the
  440: *           .    way.   (ZTREXC can not fail in this case.) ====
  441: *
  442:             IFST = NS
  443:             CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
  444:             ILST = ILST + 1
  445:          END IF
  446:    10 CONTINUE
  447: *
  448: *        ==== Return to Hessenberg form ====
  449: *
  450:       IF( NS.EQ.0 )
  451:      $   S = ZERO
  452: *
  453:       IF( NS.LT.JW ) THEN
  454: *
  455: *        ==== sorting the diagonal of T improves accuracy for
  456: *        .    graded matrices.  ====
  457: *
  458:          DO 30 I = INFQR + 1, NS
  459:             IFST = I
  460:             DO 20 J = I + 1, NS
  461:                IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
  462:      $            IFST = J
  463:    20       CONTINUE
  464:             ILST = I
  465:             IF( IFST.NE.ILST )
  466:      $         CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
  467:    30    CONTINUE
  468:       END IF
  469: *
  470: *     ==== Restore shift/eigenvalue array from T ====
  471: *
  472:       DO 40 I = INFQR + 1, JW
  473:          SH( KWTOP+I-1 ) = T( I, I )
  474:    40 CONTINUE
  475: *
  476: *
  477:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
  478:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
  479: *
  480: *           ==== Reflect spike back into lower triangle ====
  481: *
  482:             CALL ZCOPY( NS, V, LDV, WORK, 1 )
  483:             DO 50 I = 1, NS
  484:                WORK( I ) = DCONJG( WORK( I ) )
  485:    50       CONTINUE
  486:             BETA = WORK( 1 )
  487:             CALL ZLARFG( NS, BETA, WORK( 2 ), 1, TAU )
  488:             WORK( 1 ) = ONE
  489: *
  490:             CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
  491: *
  492:             CALL ZLARF( 'L', NS, JW, WORK, 1, DCONJG( TAU ), T, LDT,
  493:      $                  WORK( JW+1 ) )
  494:             CALL ZLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
  495:      $                  WORK( JW+1 ) )
  496:             CALL ZLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
  497:      $                  WORK( JW+1 ) )
  498: *
  499:             CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
  500:      $                   LWORK-JW, INFO )
  501:          END IF
  502: *
  503: *        ==== Copy updated reduced window into place ====
  504: *
  505:          IF( KWTOP.GT.1 )
  506:      $      H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) )
  507:          CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
  508:          CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
  509:      $               LDH+1 )
  510: *
  511: *        ==== Accumulate orthogonal matrix in order update
  512: *        .    H and Z, if requested.  ====
  513: *
  514:          IF( NS.GT.1 .AND. S.NE.ZERO )
  515:      $      CALL ZUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
  516:      $                   WORK( JW+1 ), LWORK-JW, INFO )
  517: *
  518: *        ==== Update vertical slab in H ====
  519: *
  520:          IF( WANTT ) THEN
  521:             LTOP = 1
  522:          ELSE
  523:             LTOP = KTOP
  524:          END IF
  525:          DO 60 KROW = LTOP, KWTOP - 1, NV
  526:             KLN = MIN( NV, KWTOP-KROW )
  527:             CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
  528:      $                  LDH, V, LDV, ZERO, WV, LDWV )
  529:             CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
  530:    60    CONTINUE
  531: *
  532: *        ==== Update horizontal slab in H ====
  533: *
  534:          IF( WANTT ) THEN
  535:             DO 70 KCOL = KBOT + 1, N, NH
  536:                KLN = MIN( NH, N-KCOL+1 )
  537:                CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
  538:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
  539:                CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
  540:      $                      LDH )
  541:    70       CONTINUE
  542:          END IF
  543: *
  544: *        ==== Update vertical slab in Z ====
  545: *
  546:          IF( WANTZ ) THEN
  547:             DO 80 KROW = ILOZ, IHIZ, NV
  548:                KLN = MIN( NV, IHIZ-KROW+1 )
  549:                CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
  550:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
  551:                CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
  552:      $                      LDZ )
  553:    80       CONTINUE
  554:          END IF
  555:       END IF
  556: *
  557: *     ==== Return the number of deflations ... ====
  558: *
  559:       ND = JW - NS
  560: *
  561: *     ==== ... and the number of shifts. (Subtracting
  562: *     .    INFQR from the spike length takes care
  563: *     .    of the case of a rare QR failure while
  564: *     .    calculating eigenvalues of the deflation
  565: *     .    window.)  ====
  566: *
  567:       NS = NS - INFQR
  568: *
  569: *      ==== Return optimal workspace. ====
  570: *
  571:       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  572: *
  573: *     ==== End of ZLAQR3 ====
  574: *
  575:       END

CVSweb interface <joel.bertrand@systella.fr>