Annotation of rpl/lapack/lapack/zlaqr3.f, revision 1.21

1.11      bertrand    1: *> \brief \b ZLAQR3 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZLAQR3 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr3.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr3.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr3.f">
1.8       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                     22: *                          IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
                     23: *                          NV, WV, LDWV, WORK, LWORK )
1.16      bertrand   24: *
1.8       bertrand   25: *       .. Scalar Arguments ..
                     26: *       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
                     27: *      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
                     28: *       LOGICAL            WANTT, WANTZ
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
                     32: *      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
                     33: *       ..
1.16      bertrand   34: *
1.8       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *>    Aggressive early deflation:
                     42: *>
                     43: *>    ZLAQR3 accepts as input an upper Hessenberg matrix
                     44: *>    H and performs an unitary similarity transformation
                     45: *>    designed to detect and deflate fully converged eigenvalues from
                     46: *>    a trailing principal submatrix.  On output H has been over-
                     47: *>    written by a new Hessenberg matrix that is a perturbation of
                     48: *>    an unitary similarity transformation of H.  It is to be
                     49: *>    hoped that the final version of H has many zero subdiagonal
                     50: *>    entries.
                     51: *>
                     52: *> \endverbatim
                     53: *
                     54: *  Arguments:
                     55: *  ==========
                     56: *
                     57: *> \param[in] WANTT
                     58: *> \verbatim
                     59: *>          WANTT is LOGICAL
                     60: *>          If .TRUE., then the Hessenberg matrix H is fully updated
                     61: *>          so that the triangular Schur factor may be
                     62: *>          computed (in cooperation with the calling subroutine).
                     63: *>          If .FALSE., then only enough of H is updated to preserve
                     64: *>          the eigenvalues.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] WANTZ
                     68: *> \verbatim
                     69: *>          WANTZ is LOGICAL
                     70: *>          If .TRUE., then the unitary matrix Z is updated so
                     71: *>          so that the unitary Schur factor may be computed
                     72: *>          (in cooperation with the calling subroutine).
                     73: *>          If .FALSE., then Z is not referenced.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] N
                     77: *> \verbatim
                     78: *>          N is INTEGER
                     79: *>          The order of the matrix H and (if WANTZ is .TRUE.) the
                     80: *>          order of the unitary matrix Z.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] KTOP
                     84: *> \verbatim
                     85: *>          KTOP is INTEGER
                     86: *>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
                     87: *>          KBOT and KTOP together determine an isolated block
                     88: *>          along the diagonal of the Hessenberg matrix.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] KBOT
                     92: *> \verbatim
                     93: *>          KBOT is INTEGER
                     94: *>          It is assumed without a check that either
                     95: *>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
                     96: *>          determine an isolated block along the diagonal of the
                     97: *>          Hessenberg matrix.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] NW
                    101: *> \verbatim
                    102: *>          NW is INTEGER
1.20      bertrand  103: *>          Deflation window size.  1 <= NW <= (KBOT-KTOP+1).
1.8       bertrand  104: *> \endverbatim
                    105: *>
                    106: *> \param[in,out] H
                    107: *> \verbatim
                    108: *>          H is COMPLEX*16 array, dimension (LDH,N)
                    109: *>          On input the initial N-by-N section of H stores the
                    110: *>          Hessenberg matrix undergoing aggressive early deflation.
                    111: *>          On output H has been transformed by a unitary
                    112: *>          similarity transformation, perturbed, and the returned
                    113: *>          to Hessenberg form that (it is to be hoped) has some
                    114: *>          zero subdiagonal entries.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] LDH
                    118: *> \verbatim
1.18      bertrand  119: *>          LDH is INTEGER
1.8       bertrand  120: *>          Leading dimension of H just as declared in the calling
1.20      bertrand  121: *>          subroutine.  N <= LDH
1.8       bertrand  122: *> \endverbatim
                    123: *>
                    124: *> \param[in] ILOZ
                    125: *> \verbatim
                    126: *>          ILOZ is INTEGER
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] IHIZ
                    130: *> \verbatim
                    131: *>          IHIZ is INTEGER
                    132: *>          Specify the rows of Z to which transformations must be
1.20      bertrand  133: *>          applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
1.8       bertrand  134: *> \endverbatim
                    135: *>
                    136: *> \param[in,out] Z
                    137: *> \verbatim
                    138: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
                    139: *>          IF WANTZ is .TRUE., then on output, the unitary
                    140: *>          similarity transformation mentioned above has been
1.14      bertrand  141: *>          accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
1.8       bertrand  142: *>          If WANTZ is .FALSE., then Z is unreferenced.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] LDZ
                    146: *> \verbatim
1.18      bertrand  147: *>          LDZ is INTEGER
1.8       bertrand  148: *>          The leading dimension of Z just as declared in the
1.20      bertrand  149: *>          calling subroutine.  1 <= LDZ.
1.8       bertrand  150: *> \endverbatim
                    151: *>
                    152: *> \param[out] NS
                    153: *> \verbatim
1.18      bertrand  154: *>          NS is INTEGER
1.8       bertrand  155: *>          The number of unconverged (ie approximate) eigenvalues
                    156: *>          returned in SR and SI that may be used as shifts by the
                    157: *>          calling subroutine.
                    158: *> \endverbatim
                    159: *>
                    160: *> \param[out] ND
                    161: *> \verbatim
1.18      bertrand  162: *>          ND is INTEGER
1.8       bertrand  163: *>          The number of converged eigenvalues uncovered by this
                    164: *>          subroutine.
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[out] SH
                    168: *> \verbatim
1.18      bertrand  169: *>          SH is COMPLEX*16 array, dimension (KBOT)
1.8       bertrand  170: *>          On output, approximate eigenvalues that may
                    171: *>          be used for shifts are stored in SH(KBOT-ND-NS+1)
                    172: *>          through SR(KBOT-ND).  Converged eigenvalues are
                    173: *>          stored in SH(KBOT-ND+1) through SH(KBOT).
                    174: *> \endverbatim
                    175: *>
                    176: *> \param[out] V
                    177: *> \verbatim
                    178: *>          V is COMPLEX*16 array, dimension (LDV,NW)
                    179: *>          An NW-by-NW work array.
                    180: *> \endverbatim
                    181: *>
                    182: *> \param[in] LDV
                    183: *> \verbatim
1.18      bertrand  184: *>          LDV is INTEGER
1.8       bertrand  185: *>          The leading dimension of V just as declared in the
1.20      bertrand  186: *>          calling subroutine.  NW <= LDV
1.8       bertrand  187: *> \endverbatim
                    188: *>
                    189: *> \param[in] NH
                    190: *> \verbatim
1.18      bertrand  191: *>          NH is INTEGER
1.20      bertrand  192: *>          The number of columns of T.  NH >= NW.
1.8       bertrand  193: *> \endverbatim
                    194: *>
                    195: *> \param[out] T
                    196: *> \verbatim
                    197: *>          T is COMPLEX*16 array, dimension (LDT,NW)
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[in] LDT
                    201: *> \verbatim
1.18      bertrand  202: *>          LDT is INTEGER
1.8       bertrand  203: *>          The leading dimension of T just as declared in the
1.20      bertrand  204: *>          calling subroutine.  NW <= LDT
1.8       bertrand  205: *> \endverbatim
                    206: *>
                    207: *> \param[in] NV
                    208: *> \verbatim
1.18      bertrand  209: *>          NV is INTEGER
1.8       bertrand  210: *>          The number of rows of work array WV available for
1.20      bertrand  211: *>          workspace.  NV >= NW.
1.8       bertrand  212: *> \endverbatim
                    213: *>
                    214: *> \param[out] WV
                    215: *> \verbatim
                    216: *>          WV is COMPLEX*16 array, dimension (LDWV,NW)
                    217: *> \endverbatim
                    218: *>
                    219: *> \param[in] LDWV
                    220: *> \verbatim
1.18      bertrand  221: *>          LDWV is INTEGER
1.8       bertrand  222: *>          The leading dimension of W just as declared in the
1.20      bertrand  223: *>          calling subroutine.  NW <= LDV
1.8       bertrand  224: *> \endverbatim
                    225: *>
                    226: *> \param[out] WORK
                    227: *> \verbatim
1.18      bertrand  228: *>          WORK is COMPLEX*16 array, dimension (LWORK)
1.8       bertrand  229: *>          On exit, WORK(1) is set to an estimate of the optimal value
                    230: *>          of LWORK for the given values of N, NW, KTOP and KBOT.
                    231: *> \endverbatim
                    232: *>
                    233: *> \param[in] LWORK
                    234: *> \verbatim
1.18      bertrand  235: *>          LWORK is INTEGER
1.8       bertrand  236: *>          The dimension of the work array WORK.  LWORK = 2*NW
                    237: *>          suffices, but greater efficiency may result from larger
                    238: *>          values of LWORK.
                    239: *>
                    240: *>          If LWORK = -1, then a workspace query is assumed; ZLAQR3
                    241: *>          only estimates the optimal workspace size for the given
                    242: *>          values of N, NW, KTOP and KBOT.  The estimate is returned
                    243: *>          in WORK(1).  No error message related to LWORK is issued
                    244: *>          by XERBLA.  Neither H nor Z are accessed.
                    245: *> \endverbatim
                    246: *
                    247: *  Authors:
                    248: *  ========
                    249: *
1.16      bertrand  250: *> \author Univ. of Tennessee
                    251: *> \author Univ. of California Berkeley
                    252: *> \author Univ. of Colorado Denver
                    253: *> \author NAG Ltd.
1.8       bertrand  254: *
                    255: *> \ingroup complex16OTHERauxiliary
                    256: *
                    257: *> \par Contributors:
                    258: *  ==================
                    259: *>
                    260: *>       Karen Braman and Ralph Byers, Department of Mathematics,
                    261: *>       University of Kansas, USA
                    262: *>
                    263: *  =====================================================================
1.1       bertrand  264:       SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                    265:      $                   IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
                    266:      $                   NV, WV, LDWV, WORK, LWORK )
                    267: *
1.21    ! bertrand  268: *  -- LAPACK auxiliary routine --
1.8       bertrand  269: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    270: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.1       bertrand  271: *
                    272: *     .. Scalar Arguments ..
                    273:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
                    274:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
                    275:       LOGICAL            WANTT, WANTZ
                    276: *     ..
                    277: *     .. Array Arguments ..
                    278:       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
                    279:      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
                    280: *     ..
                    281: *
1.8       bertrand  282: *  ================================================================
1.1       bertrand  283: *
                    284: *     .. Parameters ..
                    285:       COMPLEX*16         ZERO, ONE
                    286:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
                    287:      $                   ONE = ( 1.0d0, 0.0d0 ) )
                    288:       DOUBLE PRECISION   RZERO, RONE
                    289:       PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0 )
                    290: *     ..
                    291: *     .. Local Scalars ..
                    292:       COMPLEX*16         BETA, CDUM, S, TAU
                    293:       DOUBLE PRECISION   FOO, SAFMAX, SAFMIN, SMLNUM, ULP
                    294:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
                    295:      $                   KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
                    296:      $                   LWKOPT, NMIN
                    297: *     ..
                    298: *     .. External Functions ..
                    299:       DOUBLE PRECISION   DLAMCH
                    300:       INTEGER            ILAENV
                    301:       EXTERNAL           DLAMCH, ILAENV
                    302: *     ..
                    303: *     .. External Subroutines ..
                    304:       EXTERNAL           DLABAD, ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR,
                    305:      $                   ZLAQR4, ZLARF, ZLARFG, ZLASET, ZTREXC, ZUNMHR
                    306: *     ..
                    307: *     .. Intrinsic Functions ..
                    308:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN
                    309: *     ..
                    310: *     .. Statement Functions ..
                    311:       DOUBLE PRECISION   CABS1
                    312: *     ..
                    313: *     .. Statement Function definitions ..
                    314:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    315: *     ..
                    316: *     .. Executable Statements ..
                    317: *
                    318: *     ==== Estimate optimal workspace. ====
                    319: *
                    320:       JW = MIN( NW, KBOT-KTOP+1 )
                    321:       IF( JW.LE.2 ) THEN
                    322:          LWKOPT = 1
                    323:       ELSE
                    324: *
                    325: *        ==== Workspace query call to ZGEHRD ====
                    326: *
                    327:          CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
                    328:          LWK1 = INT( WORK( 1 ) )
                    329: *
                    330: *        ==== Workspace query call to ZUNMHR ====
                    331: *
                    332:          CALL ZUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
                    333:      $                WORK, -1, INFO )
                    334:          LWK2 = INT( WORK( 1 ) )
                    335: *
                    336: *        ==== Workspace query call to ZLAQR4 ====
                    337: *
                    338:          CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH, 1, JW, V,
                    339:      $                LDV, WORK, -1, INFQR )
                    340:          LWK3 = INT( WORK( 1 ) )
                    341: *
                    342: *        ==== Optimal workspace ====
                    343: *
                    344:          LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
                    345:       END IF
                    346: *
                    347: *     ==== Quick return in case of workspace query. ====
                    348: *
                    349:       IF( LWORK.EQ.-1 ) THEN
                    350:          WORK( 1 ) = DCMPLX( LWKOPT, 0 )
                    351:          RETURN
                    352:       END IF
                    353: *
                    354: *     ==== Nothing to do ...
                    355: *     ... for an empty active block ... ====
                    356:       NS = 0
                    357:       ND = 0
                    358:       WORK( 1 ) = ONE
                    359:       IF( KTOP.GT.KBOT )
                    360:      $   RETURN
                    361: *     ... nor for an empty deflation window. ====
                    362:       IF( NW.LT.1 )
                    363:      $   RETURN
                    364: *
                    365: *     ==== Machine constants ====
                    366: *
                    367:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
                    368:       SAFMAX = RONE / SAFMIN
                    369:       CALL DLABAD( SAFMIN, SAFMAX )
                    370:       ULP = DLAMCH( 'PRECISION' )
                    371:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
                    372: *
                    373: *     ==== Setup deflation window ====
                    374: *
                    375:       JW = MIN( NW, KBOT-KTOP+1 )
                    376:       KWTOP = KBOT - JW + 1
                    377:       IF( KWTOP.EQ.KTOP ) THEN
                    378:          S = ZERO
                    379:       ELSE
                    380:          S = H( KWTOP, KWTOP-1 )
                    381:       END IF
                    382: *
                    383:       IF( KBOT.EQ.KWTOP ) THEN
                    384: *
                    385: *        ==== 1-by-1 deflation window: not much to do ====
                    386: *
                    387:          SH( KWTOP ) = H( KWTOP, KWTOP )
                    388:          NS = 1
                    389:          ND = 0
                    390:          IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
                    391:      $       KWTOP ) ) ) ) THEN
                    392:             NS = 0
                    393:             ND = 1
                    394:             IF( KWTOP.GT.KTOP )
                    395:      $         H( KWTOP, KWTOP-1 ) = ZERO
                    396:          END IF
                    397:          WORK( 1 ) = ONE
                    398:          RETURN
                    399:       END IF
                    400: *
                    401: *     ==== Convert to spike-triangular form.  (In case of a
                    402: *     .    rare QR failure, this routine continues to do
                    403: *     .    aggressive early deflation using that part of
                    404: *     .    the deflation window that converged using INFQR
                    405: *     .    here and there to keep track.) ====
                    406: *
                    407:       CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
                    408:       CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
                    409: *
                    410:       CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
                    411:       NMIN = ILAENV( 12, 'ZLAQR3', 'SV', JW, 1, JW, LWORK )
                    412:       IF( JW.GT.NMIN ) THEN
                    413:          CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
                    414:      $                JW, V, LDV, WORK, LWORK, INFQR )
                    415:       ELSE
                    416:          CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
                    417:      $                JW, V, LDV, INFQR )
                    418:       END IF
                    419: *
                    420: *     ==== Deflation detection loop ====
                    421: *
                    422:       NS = JW
                    423:       ILST = INFQR + 1
                    424:       DO 10 KNT = INFQR + 1, JW
                    425: *
                    426: *        ==== Small spike tip deflation test ====
                    427: *
                    428:          FOO = CABS1( T( NS, NS ) )
                    429:          IF( FOO.EQ.RZERO )
                    430:      $      FOO = CABS1( S )
                    431:          IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
                    432:      $        THEN
                    433: *
                    434: *           ==== One more converged eigenvalue ====
                    435: *
                    436:             NS = NS - 1
                    437:          ELSE
                    438: *
                    439: *           ==== One undeflatable eigenvalue.  Move it up out of the
                    440: *           .    way.   (ZTREXC can not fail in this case.) ====
                    441: *
                    442:             IFST = NS
                    443:             CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
                    444:             ILST = ILST + 1
                    445:          END IF
                    446:    10 CONTINUE
                    447: *
                    448: *        ==== Return to Hessenberg form ====
                    449: *
                    450:       IF( NS.EQ.0 )
                    451:      $   S = ZERO
                    452: *
                    453:       IF( NS.LT.JW ) THEN
                    454: *
                    455: *        ==== sorting the diagonal of T improves accuracy for
                    456: *        .    graded matrices.  ====
                    457: *
                    458:          DO 30 I = INFQR + 1, NS
                    459:             IFST = I
                    460:             DO 20 J = I + 1, NS
                    461:                IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
                    462:      $            IFST = J
                    463:    20       CONTINUE
                    464:             ILST = I
                    465:             IF( IFST.NE.ILST )
                    466:      $         CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
                    467:    30    CONTINUE
                    468:       END IF
                    469: *
                    470: *     ==== Restore shift/eigenvalue array from T ====
                    471: *
                    472:       DO 40 I = INFQR + 1, JW
                    473:          SH( KWTOP+I-1 ) = T( I, I )
                    474:    40 CONTINUE
                    475: *
                    476: *
                    477:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
                    478:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
                    479: *
                    480: *           ==== Reflect spike back into lower triangle ====
                    481: *
                    482:             CALL ZCOPY( NS, V, LDV, WORK, 1 )
                    483:             DO 50 I = 1, NS
                    484:                WORK( I ) = DCONJG( WORK( I ) )
                    485:    50       CONTINUE
                    486:             BETA = WORK( 1 )
                    487:             CALL ZLARFG( NS, BETA, WORK( 2 ), 1, TAU )
                    488:             WORK( 1 ) = ONE
                    489: *
                    490:             CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
                    491: *
                    492:             CALL ZLARF( 'L', NS, JW, WORK, 1, DCONJG( TAU ), T, LDT,
                    493:      $                  WORK( JW+1 ) )
                    494:             CALL ZLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
                    495:      $                  WORK( JW+1 ) )
                    496:             CALL ZLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
                    497:      $                  WORK( JW+1 ) )
                    498: *
                    499:             CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
                    500:      $                   LWORK-JW, INFO )
                    501:          END IF
                    502: *
                    503: *        ==== Copy updated reduced window into place ====
                    504: *
                    505:          IF( KWTOP.GT.1 )
                    506:      $      H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) )
                    507:          CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
                    508:          CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
                    509:      $               LDH+1 )
                    510: *
                    511: *        ==== Accumulate orthogonal matrix in order update
                    512: *        .    H and Z, if requested.  ====
                    513: *
                    514:          IF( NS.GT.1 .AND. S.NE.ZERO )
                    515:      $      CALL ZUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
                    516:      $                   WORK( JW+1 ), LWORK-JW, INFO )
                    517: *
                    518: *        ==== Update vertical slab in H ====
                    519: *
                    520:          IF( WANTT ) THEN
                    521:             LTOP = 1
                    522:          ELSE
                    523:             LTOP = KTOP
                    524:          END IF
                    525:          DO 60 KROW = LTOP, KWTOP - 1, NV
                    526:             KLN = MIN( NV, KWTOP-KROW )
                    527:             CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
                    528:      $                  LDH, V, LDV, ZERO, WV, LDWV )
                    529:             CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
                    530:    60    CONTINUE
                    531: *
                    532: *        ==== Update horizontal slab in H ====
                    533: *
                    534:          IF( WANTT ) THEN
                    535:             DO 70 KCOL = KBOT + 1, N, NH
                    536:                KLN = MIN( NH, N-KCOL+1 )
                    537:                CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
                    538:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
                    539:                CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
                    540:      $                      LDH )
                    541:    70       CONTINUE
                    542:          END IF
                    543: *
                    544: *        ==== Update vertical slab in Z ====
                    545: *
                    546:          IF( WANTZ ) THEN
                    547:             DO 80 KROW = ILOZ, IHIZ, NV
                    548:                KLN = MIN( NV, IHIZ-KROW+1 )
                    549:                CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
                    550:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
                    551:                CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
                    552:      $                      LDZ )
                    553:    80       CONTINUE
                    554:          END IF
                    555:       END IF
                    556: *
                    557: *     ==== Return the number of deflations ... ====
                    558: *
                    559:       ND = JW - NS
                    560: *
                    561: *     ==== ... and the number of shifts. (Subtracting
                    562: *     .    INFQR from the spike length takes care
                    563: *     .    of the case of a rare QR failure while
                    564: *     .    calculating eigenvalues of the deflation
                    565: *     .    window.)  ====
                    566: *
                    567:       NS = NS - INFQR
                    568: *
                    569: *      ==== Return optimal workspace. ====
                    570: *
                    571:       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
                    572: *
                    573: *     ==== End of ZLAQR3 ====
                    574: *
                    575:       END

CVSweb interface <joel.bertrand@systella.fr>