File:  [local] / rpl / lapack / lapack / zlaqr3.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 12:30:32 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.4.2 et des scripts de compilation
pour rplcas. En particulier, le Makefile.am de giac a été modifié pour ne
compiler que le répertoire src.

    1: *> \brief \b ZLAQR3 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLAQR3 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr3.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr3.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr3.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
   22: *                          IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
   23: *                          NV, WV, LDWV, WORK, LWORK )
   24:    25: *       .. Scalar Arguments ..
   26: *       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
   27: *      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
   28: *       LOGICAL            WANTT, WANTZ
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
   32: *      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
   33: *       ..
   34: *  
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *>    Aggressive early deflation:
   42: *>
   43: *>    ZLAQR3 accepts as input an upper Hessenberg matrix
   44: *>    H and performs an unitary similarity transformation
   45: *>    designed to detect and deflate fully converged eigenvalues from
   46: *>    a trailing principal submatrix.  On output H has been over-
   47: *>    written by a new Hessenberg matrix that is a perturbation of
   48: *>    an unitary similarity transformation of H.  It is to be
   49: *>    hoped that the final version of H has many zero subdiagonal
   50: *>    entries.
   51: *>
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] WANTT
   58: *> \verbatim
   59: *>          WANTT is LOGICAL
   60: *>          If .TRUE., then the Hessenberg matrix H is fully updated
   61: *>          so that the triangular Schur factor may be
   62: *>          computed (in cooperation with the calling subroutine).
   63: *>          If .FALSE., then only enough of H is updated to preserve
   64: *>          the eigenvalues.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] WANTZ
   68: *> \verbatim
   69: *>          WANTZ is LOGICAL
   70: *>          If .TRUE., then the unitary matrix Z is updated so
   71: *>          so that the unitary Schur factor may be computed
   72: *>          (in cooperation with the calling subroutine).
   73: *>          If .FALSE., then Z is not referenced.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>          The order of the matrix H and (if WANTZ is .TRUE.) the
   80: *>          order of the unitary matrix Z.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] KTOP
   84: *> \verbatim
   85: *>          KTOP is INTEGER
   86: *>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
   87: *>          KBOT and KTOP together determine an isolated block
   88: *>          along the diagonal of the Hessenberg matrix.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] KBOT
   92: *> \verbatim
   93: *>          KBOT is INTEGER
   94: *>          It is assumed without a check that either
   95: *>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
   96: *>          determine an isolated block along the diagonal of the
   97: *>          Hessenberg matrix.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] NW
  101: *> \verbatim
  102: *>          NW is INTEGER
  103: *>          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
  104: *> \endverbatim
  105: *>
  106: *> \param[in,out] H
  107: *> \verbatim
  108: *>          H is COMPLEX*16 array, dimension (LDH,N)
  109: *>          On input the initial N-by-N section of H stores the
  110: *>          Hessenberg matrix undergoing aggressive early deflation.
  111: *>          On output H has been transformed by a unitary
  112: *>          similarity transformation, perturbed, and the returned
  113: *>          to Hessenberg form that (it is to be hoped) has some
  114: *>          zero subdiagonal entries.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDH
  118: *> \verbatim
  119: *>          LDH is integer
  120: *>          Leading dimension of H just as declared in the calling
  121: *>          subroutine.  N .LE. LDH
  122: *> \endverbatim
  123: *>
  124: *> \param[in] ILOZ
  125: *> \verbatim
  126: *>          ILOZ is INTEGER
  127: *> \endverbatim
  128: *>
  129: *> \param[in] IHIZ
  130: *> \verbatim
  131: *>          IHIZ is INTEGER
  132: *>          Specify the rows of Z to which transformations must be
  133: *>          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
  134: *> \endverbatim
  135: *>
  136: *> \param[in,out] Z
  137: *> \verbatim
  138: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
  139: *>          IF WANTZ is .TRUE., then on output, the unitary
  140: *>          similarity transformation mentioned above has been
  141: *>          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
  142: *>          If WANTZ is .FALSE., then Z is unreferenced.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LDZ
  146: *> \verbatim
  147: *>          LDZ is integer
  148: *>          The leading dimension of Z just as declared in the
  149: *>          calling subroutine.  1 .LE. LDZ.
  150: *> \endverbatim
  151: *>
  152: *> \param[out] NS
  153: *> \verbatim
  154: *>          NS is integer
  155: *>          The number of unconverged (ie approximate) eigenvalues
  156: *>          returned in SR and SI that may be used as shifts by the
  157: *>          calling subroutine.
  158: *> \endverbatim
  159: *>
  160: *> \param[out] ND
  161: *> \verbatim
  162: *>          ND is integer
  163: *>          The number of converged eigenvalues uncovered by this
  164: *>          subroutine.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] SH
  168: *> \verbatim
  169: *>          SH is COMPLEX*16 array, dimension KBOT
  170: *>          On output, approximate eigenvalues that may
  171: *>          be used for shifts are stored in SH(KBOT-ND-NS+1)
  172: *>          through SR(KBOT-ND).  Converged eigenvalues are
  173: *>          stored in SH(KBOT-ND+1) through SH(KBOT).
  174: *> \endverbatim
  175: *>
  176: *> \param[out] V
  177: *> \verbatim
  178: *>          V is COMPLEX*16 array, dimension (LDV,NW)
  179: *>          An NW-by-NW work array.
  180: *> \endverbatim
  181: *>
  182: *> \param[in] LDV
  183: *> \verbatim
  184: *>          LDV is integer scalar
  185: *>          The leading dimension of V just as declared in the
  186: *>          calling subroutine.  NW .LE. LDV
  187: *> \endverbatim
  188: *>
  189: *> \param[in] NH
  190: *> \verbatim
  191: *>          NH is integer scalar
  192: *>          The number of columns of T.  NH.GE.NW.
  193: *> \endverbatim
  194: *>
  195: *> \param[out] T
  196: *> \verbatim
  197: *>          T is COMPLEX*16 array, dimension (LDT,NW)
  198: *> \endverbatim
  199: *>
  200: *> \param[in] LDT
  201: *> \verbatim
  202: *>          LDT is integer
  203: *>          The leading dimension of T just as declared in the
  204: *>          calling subroutine.  NW .LE. LDT
  205: *> \endverbatim
  206: *>
  207: *> \param[in] NV
  208: *> \verbatim
  209: *>          NV is integer
  210: *>          The number of rows of work array WV available for
  211: *>          workspace.  NV.GE.NW.
  212: *> \endverbatim
  213: *>
  214: *> \param[out] WV
  215: *> \verbatim
  216: *>          WV is COMPLEX*16 array, dimension (LDWV,NW)
  217: *> \endverbatim
  218: *>
  219: *> \param[in] LDWV
  220: *> \verbatim
  221: *>          LDWV is integer
  222: *>          The leading dimension of W just as declared in the
  223: *>          calling subroutine.  NW .LE. LDV
  224: *> \endverbatim
  225: *>
  226: *> \param[out] WORK
  227: *> \verbatim
  228: *>          WORK is COMPLEX*16 array, dimension LWORK.
  229: *>          On exit, WORK(1) is set to an estimate of the optimal value
  230: *>          of LWORK for the given values of N, NW, KTOP and KBOT.
  231: *> \endverbatim
  232: *>
  233: *> \param[in] LWORK
  234: *> \verbatim
  235: *>          LWORK is integer
  236: *>          The dimension of the work array WORK.  LWORK = 2*NW
  237: *>          suffices, but greater efficiency may result from larger
  238: *>          values of LWORK.
  239: *>
  240: *>          If LWORK = -1, then a workspace query is assumed; ZLAQR3
  241: *>          only estimates the optimal workspace size for the given
  242: *>          values of N, NW, KTOP and KBOT.  The estimate is returned
  243: *>          in WORK(1).  No error message related to LWORK is issued
  244: *>          by XERBLA.  Neither H nor Z are accessed.
  245: *> \endverbatim
  246: *
  247: *  Authors:
  248: *  ========
  249: *
  250: *> \author Univ. of Tennessee 
  251: *> \author Univ. of California Berkeley 
  252: *> \author Univ. of Colorado Denver 
  253: *> \author NAG Ltd. 
  254: *
  255: *> \date September 2012
  256: *
  257: *> \ingroup complex16OTHERauxiliary
  258: *
  259: *> \par Contributors:
  260: *  ==================
  261: *>
  262: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  263: *>       University of Kansas, USA
  264: *>
  265: *  =====================================================================
  266:       SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
  267:      $                   IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
  268:      $                   NV, WV, LDWV, WORK, LWORK )
  269: *
  270: *  -- LAPACK auxiliary routine (version 3.4.2) --
  271: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  272: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  273: *     September 2012
  274: *
  275: *     .. Scalar Arguments ..
  276:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
  277:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
  278:       LOGICAL            WANTT, WANTZ
  279: *     ..
  280: *     .. Array Arguments ..
  281:       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
  282:      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
  283: *     ..
  284: *
  285: *  ================================================================
  286: *
  287: *     .. Parameters ..
  288:       COMPLEX*16         ZERO, ONE
  289:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
  290:      $                   ONE = ( 1.0d0, 0.0d0 ) )
  291:       DOUBLE PRECISION   RZERO, RONE
  292:       PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0 )
  293: *     ..
  294: *     .. Local Scalars ..
  295:       COMPLEX*16         BETA, CDUM, S, TAU
  296:       DOUBLE PRECISION   FOO, SAFMAX, SAFMIN, SMLNUM, ULP
  297:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
  298:      $                   KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
  299:      $                   LWKOPT, NMIN
  300: *     ..
  301: *     .. External Functions ..
  302:       DOUBLE PRECISION   DLAMCH
  303:       INTEGER            ILAENV
  304:       EXTERNAL           DLAMCH, ILAENV
  305: *     ..
  306: *     .. External Subroutines ..
  307:       EXTERNAL           DLABAD, ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR,
  308:      $                   ZLAQR4, ZLARF, ZLARFG, ZLASET, ZTREXC, ZUNMHR
  309: *     ..
  310: *     .. Intrinsic Functions ..
  311:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN
  312: *     ..
  313: *     .. Statement Functions ..
  314:       DOUBLE PRECISION   CABS1
  315: *     ..
  316: *     .. Statement Function definitions ..
  317:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  318: *     ..
  319: *     .. Executable Statements ..
  320: *
  321: *     ==== Estimate optimal workspace. ====
  322: *
  323:       JW = MIN( NW, KBOT-KTOP+1 )
  324:       IF( JW.LE.2 ) THEN
  325:          LWKOPT = 1
  326:       ELSE
  327: *
  328: *        ==== Workspace query call to ZGEHRD ====
  329: *
  330:          CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
  331:          LWK1 = INT( WORK( 1 ) )
  332: *
  333: *        ==== Workspace query call to ZUNMHR ====
  334: *
  335:          CALL ZUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
  336:      $                WORK, -1, INFO )
  337:          LWK2 = INT( WORK( 1 ) )
  338: *
  339: *        ==== Workspace query call to ZLAQR4 ====
  340: *
  341:          CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH, 1, JW, V,
  342:      $                LDV, WORK, -1, INFQR )
  343:          LWK3 = INT( WORK( 1 ) )
  344: *
  345: *        ==== Optimal workspace ====
  346: *
  347:          LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
  348:       END IF
  349: *
  350: *     ==== Quick return in case of workspace query. ====
  351: *
  352:       IF( LWORK.EQ.-1 ) THEN
  353:          WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  354:          RETURN
  355:       END IF
  356: *
  357: *     ==== Nothing to do ...
  358: *     ... for an empty active block ... ====
  359:       NS = 0
  360:       ND = 0
  361:       WORK( 1 ) = ONE
  362:       IF( KTOP.GT.KBOT )
  363:      $   RETURN
  364: *     ... nor for an empty deflation window. ====
  365:       IF( NW.LT.1 )
  366:      $   RETURN
  367: *
  368: *     ==== Machine constants ====
  369: *
  370:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  371:       SAFMAX = RONE / SAFMIN
  372:       CALL DLABAD( SAFMIN, SAFMAX )
  373:       ULP = DLAMCH( 'PRECISION' )
  374:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
  375: *
  376: *     ==== Setup deflation window ====
  377: *
  378:       JW = MIN( NW, KBOT-KTOP+1 )
  379:       KWTOP = KBOT - JW + 1
  380:       IF( KWTOP.EQ.KTOP ) THEN
  381:          S = ZERO
  382:       ELSE
  383:          S = H( KWTOP, KWTOP-1 )
  384:       END IF
  385: *
  386:       IF( KBOT.EQ.KWTOP ) THEN
  387: *
  388: *        ==== 1-by-1 deflation window: not much to do ====
  389: *
  390:          SH( KWTOP ) = H( KWTOP, KWTOP )
  391:          NS = 1
  392:          ND = 0
  393:          IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
  394:      $       KWTOP ) ) ) ) THEN
  395:             NS = 0
  396:             ND = 1
  397:             IF( KWTOP.GT.KTOP )
  398:      $         H( KWTOP, KWTOP-1 ) = ZERO
  399:          END IF
  400:          WORK( 1 ) = ONE
  401:          RETURN
  402:       END IF
  403: *
  404: *     ==== Convert to spike-triangular form.  (In case of a
  405: *     .    rare QR failure, this routine continues to do
  406: *     .    aggressive early deflation using that part of
  407: *     .    the deflation window that converged using INFQR
  408: *     .    here and there to keep track.) ====
  409: *
  410:       CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
  411:       CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
  412: *
  413:       CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
  414:       NMIN = ILAENV( 12, 'ZLAQR3', 'SV', JW, 1, JW, LWORK )
  415:       IF( JW.GT.NMIN ) THEN
  416:          CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
  417:      $                JW, V, LDV, WORK, LWORK, INFQR )
  418:       ELSE
  419:          CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
  420:      $                JW, V, LDV, INFQR )
  421:       END IF
  422: *
  423: *     ==== Deflation detection loop ====
  424: *
  425:       NS = JW
  426:       ILST = INFQR + 1
  427:       DO 10 KNT = INFQR + 1, JW
  428: *
  429: *        ==== Small spike tip deflation test ====
  430: *
  431:          FOO = CABS1( T( NS, NS ) )
  432:          IF( FOO.EQ.RZERO )
  433:      $      FOO = CABS1( S )
  434:          IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
  435:      $        THEN
  436: *
  437: *           ==== One more converged eigenvalue ====
  438: *
  439:             NS = NS - 1
  440:          ELSE
  441: *
  442: *           ==== One undeflatable eigenvalue.  Move it up out of the
  443: *           .    way.   (ZTREXC can not fail in this case.) ====
  444: *
  445:             IFST = NS
  446:             CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
  447:             ILST = ILST + 1
  448:          END IF
  449:    10 CONTINUE
  450: *
  451: *        ==== Return to Hessenberg form ====
  452: *
  453:       IF( NS.EQ.0 )
  454:      $   S = ZERO
  455: *
  456:       IF( NS.LT.JW ) THEN
  457: *
  458: *        ==== sorting the diagonal of T improves accuracy for
  459: *        .    graded matrices.  ====
  460: *
  461:          DO 30 I = INFQR + 1, NS
  462:             IFST = I
  463:             DO 20 J = I + 1, NS
  464:                IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
  465:      $            IFST = J
  466:    20       CONTINUE
  467:             ILST = I
  468:             IF( IFST.NE.ILST )
  469:      $         CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
  470:    30    CONTINUE
  471:       END IF
  472: *
  473: *     ==== Restore shift/eigenvalue array from T ====
  474: *
  475:       DO 40 I = INFQR + 1, JW
  476:          SH( KWTOP+I-1 ) = T( I, I )
  477:    40 CONTINUE
  478: *
  479: *
  480:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
  481:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
  482: *
  483: *           ==== Reflect spike back into lower triangle ====
  484: *
  485:             CALL ZCOPY( NS, V, LDV, WORK, 1 )
  486:             DO 50 I = 1, NS
  487:                WORK( I ) = DCONJG( WORK( I ) )
  488:    50       CONTINUE
  489:             BETA = WORK( 1 )
  490:             CALL ZLARFG( NS, BETA, WORK( 2 ), 1, TAU )
  491:             WORK( 1 ) = ONE
  492: *
  493:             CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
  494: *
  495:             CALL ZLARF( 'L', NS, JW, WORK, 1, DCONJG( TAU ), T, LDT,
  496:      $                  WORK( JW+1 ) )
  497:             CALL ZLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
  498:      $                  WORK( JW+1 ) )
  499:             CALL ZLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
  500:      $                  WORK( JW+1 ) )
  501: *
  502:             CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
  503:      $                   LWORK-JW, INFO )
  504:          END IF
  505: *
  506: *        ==== Copy updated reduced window into place ====
  507: *
  508:          IF( KWTOP.GT.1 )
  509:      $      H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) )
  510:          CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
  511:          CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
  512:      $               LDH+1 )
  513: *
  514: *        ==== Accumulate orthogonal matrix in order update
  515: *        .    H and Z, if requested.  ====
  516: *
  517:          IF( NS.GT.1 .AND. S.NE.ZERO )
  518:      $      CALL ZUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
  519:      $                   WORK( JW+1 ), LWORK-JW, INFO )
  520: *
  521: *        ==== Update vertical slab in H ====
  522: *
  523:          IF( WANTT ) THEN
  524:             LTOP = 1
  525:          ELSE
  526:             LTOP = KTOP
  527:          END IF
  528:          DO 60 KROW = LTOP, KWTOP - 1, NV
  529:             KLN = MIN( NV, KWTOP-KROW )
  530:             CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
  531:      $                  LDH, V, LDV, ZERO, WV, LDWV )
  532:             CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
  533:    60    CONTINUE
  534: *
  535: *        ==== Update horizontal slab in H ====
  536: *
  537:          IF( WANTT ) THEN
  538:             DO 70 KCOL = KBOT + 1, N, NH
  539:                KLN = MIN( NH, N-KCOL+1 )
  540:                CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
  541:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
  542:                CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
  543:      $                      LDH )
  544:    70       CONTINUE
  545:          END IF
  546: *
  547: *        ==== Update vertical slab in Z ====
  548: *
  549:          IF( WANTZ ) THEN
  550:             DO 80 KROW = ILOZ, IHIZ, NV
  551:                KLN = MIN( NV, IHIZ-KROW+1 )
  552:                CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
  553:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
  554:                CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
  555:      $                      LDZ )
  556:    80       CONTINUE
  557:          END IF
  558:       END IF
  559: *
  560: *     ==== Return the number of deflations ... ====
  561: *
  562:       ND = JW - NS
  563: *
  564: *     ==== ... and the number of shifts. (Subtracting
  565: *     .    INFQR from the spike length takes care
  566: *     .    of the case of a rare QR failure while
  567: *     .    calculating eigenvalues of the deflation
  568: *     .    window.)  ====
  569: *
  570:       NS = NS - INFQR
  571: *
  572: *      ==== Return optimal workspace. ====
  573: *
  574:       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
  575: *
  576: *     ==== End of ZLAQR3 ====
  577: *
  578:       END

CVSweb interface <joel.bertrand@systella.fr>