Annotation of rpl/lapack/lapack/zlaqr3.f, revision 1.11

1.11    ! bertrand    1: *> \brief \b ZLAQR3 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZLAQR3 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr3.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr3.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr3.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                     22: *                          IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
                     23: *                          NV, WV, LDWV, WORK, LWORK )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
                     27: *      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
                     28: *       LOGICAL            WANTT, WANTZ
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
                     32: *      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
                     33: *       ..
                     34: *  
                     35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *>    Aggressive early deflation:
                     42: *>
                     43: *>    ZLAQR3 accepts as input an upper Hessenberg matrix
                     44: *>    H and performs an unitary similarity transformation
                     45: *>    designed to detect and deflate fully converged eigenvalues from
                     46: *>    a trailing principal submatrix.  On output H has been over-
                     47: *>    written by a new Hessenberg matrix that is a perturbation of
                     48: *>    an unitary similarity transformation of H.  It is to be
                     49: *>    hoped that the final version of H has many zero subdiagonal
                     50: *>    entries.
                     51: *>
                     52: *> \endverbatim
                     53: *
                     54: *  Arguments:
                     55: *  ==========
                     56: *
                     57: *> \param[in] WANTT
                     58: *> \verbatim
                     59: *>          WANTT is LOGICAL
                     60: *>          If .TRUE., then the Hessenberg matrix H is fully updated
                     61: *>          so that the triangular Schur factor may be
                     62: *>          computed (in cooperation with the calling subroutine).
                     63: *>          If .FALSE., then only enough of H is updated to preserve
                     64: *>          the eigenvalues.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] WANTZ
                     68: *> \verbatim
                     69: *>          WANTZ is LOGICAL
                     70: *>          If .TRUE., then the unitary matrix Z is updated so
                     71: *>          so that the unitary Schur factor may be computed
                     72: *>          (in cooperation with the calling subroutine).
                     73: *>          If .FALSE., then Z is not referenced.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] N
                     77: *> \verbatim
                     78: *>          N is INTEGER
                     79: *>          The order of the matrix H and (if WANTZ is .TRUE.) the
                     80: *>          order of the unitary matrix Z.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] KTOP
                     84: *> \verbatim
                     85: *>          KTOP is INTEGER
                     86: *>          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
                     87: *>          KBOT and KTOP together determine an isolated block
                     88: *>          along the diagonal of the Hessenberg matrix.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] KBOT
                     92: *> \verbatim
                     93: *>          KBOT is INTEGER
                     94: *>          It is assumed without a check that either
                     95: *>          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together
                     96: *>          determine an isolated block along the diagonal of the
                     97: *>          Hessenberg matrix.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] NW
                    101: *> \verbatim
                    102: *>          NW is INTEGER
                    103: *>          Deflation window size.  1 .LE. NW .LE. (KBOT-KTOP+1).
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in,out] H
                    107: *> \verbatim
                    108: *>          H is COMPLEX*16 array, dimension (LDH,N)
                    109: *>          On input the initial N-by-N section of H stores the
                    110: *>          Hessenberg matrix undergoing aggressive early deflation.
                    111: *>          On output H has been transformed by a unitary
                    112: *>          similarity transformation, perturbed, and the returned
                    113: *>          to Hessenberg form that (it is to be hoped) has some
                    114: *>          zero subdiagonal entries.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] LDH
                    118: *> \verbatim
                    119: *>          LDH is integer
                    120: *>          Leading dimension of H just as declared in the calling
                    121: *>          subroutine.  N .LE. LDH
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] ILOZ
                    125: *> \verbatim
                    126: *>          ILOZ is INTEGER
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] IHIZ
                    130: *> \verbatim
                    131: *>          IHIZ is INTEGER
                    132: *>          Specify the rows of Z to which transformations must be
                    133: *>          applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in,out] Z
                    137: *> \verbatim
                    138: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
                    139: *>          IF WANTZ is .TRUE., then on output, the unitary
                    140: *>          similarity transformation mentioned above has been
                    141: *>          accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right.
                    142: *>          If WANTZ is .FALSE., then Z is unreferenced.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] LDZ
                    146: *> \verbatim
                    147: *>          LDZ is integer
                    148: *>          The leading dimension of Z just as declared in the
                    149: *>          calling subroutine.  1 .LE. LDZ.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[out] NS
                    153: *> \verbatim
                    154: *>          NS is integer
                    155: *>          The number of unconverged (ie approximate) eigenvalues
                    156: *>          returned in SR and SI that may be used as shifts by the
                    157: *>          calling subroutine.
                    158: *> \endverbatim
                    159: *>
                    160: *> \param[out] ND
                    161: *> \verbatim
                    162: *>          ND is integer
                    163: *>          The number of converged eigenvalues uncovered by this
                    164: *>          subroutine.
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[out] SH
                    168: *> \verbatim
                    169: *>          SH is COMPLEX*16 array, dimension KBOT
                    170: *>          On output, approximate eigenvalues that may
                    171: *>          be used for shifts are stored in SH(KBOT-ND-NS+1)
                    172: *>          through SR(KBOT-ND).  Converged eigenvalues are
                    173: *>          stored in SH(KBOT-ND+1) through SH(KBOT).
                    174: *> \endverbatim
                    175: *>
                    176: *> \param[out] V
                    177: *> \verbatim
                    178: *>          V is COMPLEX*16 array, dimension (LDV,NW)
                    179: *>          An NW-by-NW work array.
                    180: *> \endverbatim
                    181: *>
                    182: *> \param[in] LDV
                    183: *> \verbatim
                    184: *>          LDV is integer scalar
                    185: *>          The leading dimension of V just as declared in the
                    186: *>          calling subroutine.  NW .LE. LDV
                    187: *> \endverbatim
                    188: *>
                    189: *> \param[in] NH
                    190: *> \verbatim
                    191: *>          NH is integer scalar
                    192: *>          The number of columns of T.  NH.GE.NW.
                    193: *> \endverbatim
                    194: *>
                    195: *> \param[out] T
                    196: *> \verbatim
                    197: *>          T is COMPLEX*16 array, dimension (LDT,NW)
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[in] LDT
                    201: *> \verbatim
                    202: *>          LDT is integer
                    203: *>          The leading dimension of T just as declared in the
                    204: *>          calling subroutine.  NW .LE. LDT
                    205: *> \endverbatim
                    206: *>
                    207: *> \param[in] NV
                    208: *> \verbatim
                    209: *>          NV is integer
                    210: *>          The number of rows of work array WV available for
                    211: *>          workspace.  NV.GE.NW.
                    212: *> \endverbatim
                    213: *>
                    214: *> \param[out] WV
                    215: *> \verbatim
                    216: *>          WV is COMPLEX*16 array, dimension (LDWV,NW)
                    217: *> \endverbatim
                    218: *>
                    219: *> \param[in] LDWV
                    220: *> \verbatim
                    221: *>          LDWV is integer
                    222: *>          The leading dimension of W just as declared in the
                    223: *>          calling subroutine.  NW .LE. LDV
                    224: *> \endverbatim
                    225: *>
                    226: *> \param[out] WORK
                    227: *> \verbatim
                    228: *>          WORK is COMPLEX*16 array, dimension LWORK.
                    229: *>          On exit, WORK(1) is set to an estimate of the optimal value
                    230: *>          of LWORK for the given values of N, NW, KTOP and KBOT.
                    231: *> \endverbatim
                    232: *>
                    233: *> \param[in] LWORK
                    234: *> \verbatim
                    235: *>          LWORK is integer
                    236: *>          The dimension of the work array WORK.  LWORK = 2*NW
                    237: *>          suffices, but greater efficiency may result from larger
                    238: *>          values of LWORK.
                    239: *>
                    240: *>          If LWORK = -1, then a workspace query is assumed; ZLAQR3
                    241: *>          only estimates the optimal workspace size for the given
                    242: *>          values of N, NW, KTOP and KBOT.  The estimate is returned
                    243: *>          in WORK(1).  No error message related to LWORK is issued
                    244: *>          by XERBLA.  Neither H nor Z are accessed.
                    245: *> \endverbatim
                    246: *
                    247: *  Authors:
                    248: *  ========
                    249: *
                    250: *> \author Univ. of Tennessee 
                    251: *> \author Univ. of California Berkeley 
                    252: *> \author Univ. of Colorado Denver 
                    253: *> \author NAG Ltd. 
                    254: *
1.11    ! bertrand  255: *> \date September 2012
1.8       bertrand  256: *
                    257: *> \ingroup complex16OTHERauxiliary
                    258: *
                    259: *> \par Contributors:
                    260: *  ==================
                    261: *>
                    262: *>       Karen Braman and Ralph Byers, Department of Mathematics,
                    263: *>       University of Kansas, USA
                    264: *>
                    265: *  =====================================================================
1.1       bertrand  266:       SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
                    267:      $                   IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
                    268:      $                   NV, WV, LDWV, WORK, LWORK )
                    269: *
1.11    ! bertrand  270: *  -- LAPACK auxiliary routine (version 3.4.2) --
1.8       bertrand  271: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    272: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.11    ! bertrand  273: *     September 2012
1.1       bertrand  274: *
                    275: *     .. Scalar Arguments ..
                    276:       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
                    277:      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW
                    278:       LOGICAL            WANTT, WANTZ
                    279: *     ..
                    280: *     .. Array Arguments ..
                    281:       COMPLEX*16         H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
                    282:      $                   WORK( * ), WV( LDWV, * ), Z( LDZ, * )
                    283: *     ..
                    284: *
1.8       bertrand  285: *  ================================================================
1.1       bertrand  286: *
                    287: *     .. Parameters ..
                    288:       COMPLEX*16         ZERO, ONE
                    289:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
                    290:      $                   ONE = ( 1.0d0, 0.0d0 ) )
                    291:       DOUBLE PRECISION   RZERO, RONE
                    292:       PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0 )
                    293: *     ..
                    294: *     .. Local Scalars ..
                    295:       COMPLEX*16         BETA, CDUM, S, TAU
                    296:       DOUBLE PRECISION   FOO, SAFMAX, SAFMIN, SMLNUM, ULP
                    297:       INTEGER            I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
                    298:      $                   KNT, KROW, KWTOP, LTOP, LWK1, LWK2, LWK3,
                    299:      $                   LWKOPT, NMIN
                    300: *     ..
                    301: *     .. External Functions ..
                    302:       DOUBLE PRECISION   DLAMCH
                    303:       INTEGER            ILAENV
                    304:       EXTERNAL           DLAMCH, ILAENV
                    305: *     ..
                    306: *     .. External Subroutines ..
                    307:       EXTERNAL           DLABAD, ZCOPY, ZGEHRD, ZGEMM, ZLACPY, ZLAHQR,
                    308:      $                   ZLAQR4, ZLARF, ZLARFG, ZLASET, ZTREXC, ZUNMHR
                    309: *     ..
                    310: *     .. Intrinsic Functions ..
                    311:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, MAX, MIN
                    312: *     ..
                    313: *     .. Statement Functions ..
                    314:       DOUBLE PRECISION   CABS1
                    315: *     ..
                    316: *     .. Statement Function definitions ..
                    317:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    318: *     ..
                    319: *     .. Executable Statements ..
                    320: *
                    321: *     ==== Estimate optimal workspace. ====
                    322: *
                    323:       JW = MIN( NW, KBOT-KTOP+1 )
                    324:       IF( JW.LE.2 ) THEN
                    325:          LWKOPT = 1
                    326:       ELSE
                    327: *
                    328: *        ==== Workspace query call to ZGEHRD ====
                    329: *
                    330:          CALL ZGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
                    331:          LWK1 = INT( WORK( 1 ) )
                    332: *
                    333: *        ==== Workspace query call to ZUNMHR ====
                    334: *
                    335:          CALL ZUNMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
                    336:      $                WORK, -1, INFO )
                    337:          LWK2 = INT( WORK( 1 ) )
                    338: *
                    339: *        ==== Workspace query call to ZLAQR4 ====
                    340: *
                    341:          CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH, 1, JW, V,
                    342:      $                LDV, WORK, -1, INFQR )
                    343:          LWK3 = INT( WORK( 1 ) )
                    344: *
                    345: *        ==== Optimal workspace ====
                    346: *
                    347:          LWKOPT = MAX( JW+MAX( LWK1, LWK2 ), LWK3 )
                    348:       END IF
                    349: *
                    350: *     ==== Quick return in case of workspace query. ====
                    351: *
                    352:       IF( LWORK.EQ.-1 ) THEN
                    353:          WORK( 1 ) = DCMPLX( LWKOPT, 0 )
                    354:          RETURN
                    355:       END IF
                    356: *
                    357: *     ==== Nothing to do ...
                    358: *     ... for an empty active block ... ====
                    359:       NS = 0
                    360:       ND = 0
                    361:       WORK( 1 ) = ONE
                    362:       IF( KTOP.GT.KBOT )
                    363:      $   RETURN
                    364: *     ... nor for an empty deflation window. ====
                    365:       IF( NW.LT.1 )
                    366:      $   RETURN
                    367: *
                    368: *     ==== Machine constants ====
                    369: *
                    370:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
                    371:       SAFMAX = RONE / SAFMIN
                    372:       CALL DLABAD( SAFMIN, SAFMAX )
                    373:       ULP = DLAMCH( 'PRECISION' )
                    374:       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
                    375: *
                    376: *     ==== Setup deflation window ====
                    377: *
                    378:       JW = MIN( NW, KBOT-KTOP+1 )
                    379:       KWTOP = KBOT - JW + 1
                    380:       IF( KWTOP.EQ.KTOP ) THEN
                    381:          S = ZERO
                    382:       ELSE
                    383:          S = H( KWTOP, KWTOP-1 )
                    384:       END IF
                    385: *
                    386:       IF( KBOT.EQ.KWTOP ) THEN
                    387: *
                    388: *        ==== 1-by-1 deflation window: not much to do ====
                    389: *
                    390:          SH( KWTOP ) = H( KWTOP, KWTOP )
                    391:          NS = 1
                    392:          ND = 0
                    393:          IF( CABS1( S ).LE.MAX( SMLNUM, ULP*CABS1( H( KWTOP,
                    394:      $       KWTOP ) ) ) ) THEN
                    395:             NS = 0
                    396:             ND = 1
                    397:             IF( KWTOP.GT.KTOP )
                    398:      $         H( KWTOP, KWTOP-1 ) = ZERO
                    399:          END IF
                    400:          WORK( 1 ) = ONE
                    401:          RETURN
                    402:       END IF
                    403: *
                    404: *     ==== Convert to spike-triangular form.  (In case of a
                    405: *     .    rare QR failure, this routine continues to do
                    406: *     .    aggressive early deflation using that part of
                    407: *     .    the deflation window that converged using INFQR
                    408: *     .    here and there to keep track.) ====
                    409: *
                    410:       CALL ZLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
                    411:       CALL ZCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
                    412: *
                    413:       CALL ZLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
                    414:       NMIN = ILAENV( 12, 'ZLAQR3', 'SV', JW, 1, JW, LWORK )
                    415:       IF( JW.GT.NMIN ) THEN
                    416:          CALL ZLAQR4( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
                    417:      $                JW, V, LDV, WORK, LWORK, INFQR )
                    418:       ELSE
                    419:          CALL ZLAHQR( .true., .true., JW, 1, JW, T, LDT, SH( KWTOP ), 1,
                    420:      $                JW, V, LDV, INFQR )
                    421:       END IF
                    422: *
                    423: *     ==== Deflation detection loop ====
                    424: *
                    425:       NS = JW
                    426:       ILST = INFQR + 1
                    427:       DO 10 KNT = INFQR + 1, JW
                    428: *
                    429: *        ==== Small spike tip deflation test ====
                    430: *
                    431:          FOO = CABS1( T( NS, NS ) )
                    432:          IF( FOO.EQ.RZERO )
                    433:      $      FOO = CABS1( S )
                    434:          IF( CABS1( S )*CABS1( V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) )
                    435:      $        THEN
                    436: *
                    437: *           ==== One more converged eigenvalue ====
                    438: *
                    439:             NS = NS - 1
                    440:          ELSE
                    441: *
                    442: *           ==== One undeflatable eigenvalue.  Move it up out of the
                    443: *           .    way.   (ZTREXC can not fail in this case.) ====
                    444: *
                    445:             IFST = NS
                    446:             CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
                    447:             ILST = ILST + 1
                    448:          END IF
                    449:    10 CONTINUE
                    450: *
                    451: *        ==== Return to Hessenberg form ====
                    452: *
                    453:       IF( NS.EQ.0 )
                    454:      $   S = ZERO
                    455: *
                    456:       IF( NS.LT.JW ) THEN
                    457: *
                    458: *        ==== sorting the diagonal of T improves accuracy for
                    459: *        .    graded matrices.  ====
                    460: *
                    461:          DO 30 I = INFQR + 1, NS
                    462:             IFST = I
                    463:             DO 20 J = I + 1, NS
                    464:                IF( CABS1( T( J, J ) ).GT.CABS1( T( IFST, IFST ) ) )
                    465:      $            IFST = J
                    466:    20       CONTINUE
                    467:             ILST = I
                    468:             IF( IFST.NE.ILST )
                    469:      $         CALL ZTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, INFO )
                    470:    30    CONTINUE
                    471:       END IF
                    472: *
                    473: *     ==== Restore shift/eigenvalue array from T ====
                    474: *
                    475:       DO 40 I = INFQR + 1, JW
                    476:          SH( KWTOP+I-1 ) = T( I, I )
                    477:    40 CONTINUE
                    478: *
                    479: *
                    480:       IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
                    481:          IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
                    482: *
                    483: *           ==== Reflect spike back into lower triangle ====
                    484: *
                    485:             CALL ZCOPY( NS, V, LDV, WORK, 1 )
                    486:             DO 50 I = 1, NS
                    487:                WORK( I ) = DCONJG( WORK( I ) )
                    488:    50       CONTINUE
                    489:             BETA = WORK( 1 )
                    490:             CALL ZLARFG( NS, BETA, WORK( 2 ), 1, TAU )
                    491:             WORK( 1 ) = ONE
                    492: *
                    493:             CALL ZLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
                    494: *
                    495:             CALL ZLARF( 'L', NS, JW, WORK, 1, DCONJG( TAU ), T, LDT,
                    496:      $                  WORK( JW+1 ) )
                    497:             CALL ZLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
                    498:      $                  WORK( JW+1 ) )
                    499:             CALL ZLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
                    500:      $                  WORK( JW+1 ) )
                    501: *
                    502:             CALL ZGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
                    503:      $                   LWORK-JW, INFO )
                    504:          END IF
                    505: *
                    506: *        ==== Copy updated reduced window into place ====
                    507: *
                    508:          IF( KWTOP.GT.1 )
                    509:      $      H( KWTOP, KWTOP-1 ) = S*DCONJG( V( 1, 1 ) )
                    510:          CALL ZLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
                    511:          CALL ZCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
                    512:      $               LDH+1 )
                    513: *
                    514: *        ==== Accumulate orthogonal matrix in order update
                    515: *        .    H and Z, if requested.  ====
                    516: *
                    517:          IF( NS.GT.1 .AND. S.NE.ZERO )
                    518:      $      CALL ZUNMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
                    519:      $                   WORK( JW+1 ), LWORK-JW, INFO )
                    520: *
                    521: *        ==== Update vertical slab in H ====
                    522: *
                    523:          IF( WANTT ) THEN
                    524:             LTOP = 1
                    525:          ELSE
                    526:             LTOP = KTOP
                    527:          END IF
                    528:          DO 60 KROW = LTOP, KWTOP - 1, NV
                    529:             KLN = MIN( NV, KWTOP-KROW )
                    530:             CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
                    531:      $                  LDH, V, LDV, ZERO, WV, LDWV )
                    532:             CALL ZLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
                    533:    60    CONTINUE
                    534: *
                    535: *        ==== Update horizontal slab in H ====
                    536: *
                    537:          IF( WANTT ) THEN
                    538:             DO 70 KCOL = KBOT + 1, N, NH
                    539:                KLN = MIN( NH, N-KCOL+1 )
                    540:                CALL ZGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
                    541:      $                     H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
                    542:                CALL ZLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
                    543:      $                      LDH )
                    544:    70       CONTINUE
                    545:          END IF
                    546: *
                    547: *        ==== Update vertical slab in Z ====
                    548: *
                    549:          IF( WANTZ ) THEN
                    550:             DO 80 KROW = ILOZ, IHIZ, NV
                    551:                KLN = MIN( NV, IHIZ-KROW+1 )
                    552:                CALL ZGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
                    553:      $                     LDZ, V, LDV, ZERO, WV, LDWV )
                    554:                CALL ZLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
                    555:      $                      LDZ )
                    556:    80       CONTINUE
                    557:          END IF
                    558:       END IF
                    559: *
                    560: *     ==== Return the number of deflations ... ====
                    561: *
                    562:       ND = JW - NS
                    563: *
                    564: *     ==== ... and the number of shifts. (Subtracting
                    565: *     .    INFQR from the spike length takes care
                    566: *     .    of the case of a rare QR failure while
                    567: *     .    calculating eigenvalues of the deflation
                    568: *     .    window.)  ====
                    569: *
                    570:       NS = NS - INFQR
                    571: *
                    572: *      ==== Return optimal workspace. ====
                    573: *
                    574:       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
                    575: *
                    576: *     ==== End of ZLAQR3 ====
                    577: *
                    578:       END

CVSweb interface <joel.bertrand@systella.fr>