File:  [local] / rpl / lapack / lapack / zlahqr.f
Revision 1.13: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:37 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b ZLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZLAHQR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahqr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahqr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahqr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
   22: *                          IHIZ, Z, LDZ, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
   26: *       LOGICAL            WANTT, WANTZ
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         H( LDH, * ), W( * ), Z( LDZ, * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *>    ZLAHQR is an auxiliary routine called by CHSEQR to update the
   39: *>    eigenvalues and Schur decomposition already computed by CHSEQR, by
   40: *>    dealing with the Hessenberg submatrix in rows and columns ILO to
   41: *>    IHI.
   42: *> \endverbatim
   43: *
   44: *  Arguments:
   45: *  ==========
   46: *
   47: *> \param[in] WANTT
   48: *> \verbatim
   49: *>          WANTT is LOGICAL
   50: *>          = .TRUE. : the full Schur form T is required;
   51: *>          = .FALSE.: only eigenvalues are required.
   52: *> \endverbatim
   53: *>
   54: *> \param[in] WANTZ
   55: *> \verbatim
   56: *>          WANTZ is LOGICAL
   57: *>          = .TRUE. : the matrix of Schur vectors Z is required;
   58: *>          = .FALSE.: Schur vectors are not required.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] N
   62: *> \verbatim
   63: *>          N is INTEGER
   64: *>          The order of the matrix H.  N >= 0.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] ILO
   68: *> \verbatim
   69: *>          ILO is INTEGER
   70: *> \endverbatim
   71: *>
   72: *> \param[in] IHI
   73: *> \verbatim
   74: *>          IHI is INTEGER
   75: *>          It is assumed that H is already upper triangular in rows and
   76: *>          columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
   77: *>          ZLAHQR works primarily with the Hessenberg submatrix in rows
   78: *>          and columns ILO to IHI, but applies transformations to all of
   79: *>          H if WANTT is .TRUE..
   80: *>          1 <= ILO <= max(1,IHI); IHI <= N.
   81: *> \endverbatim
   82: *>
   83: *> \param[in,out] H
   84: *> \verbatim
   85: *>          H is COMPLEX*16 array, dimension (LDH,N)
   86: *>          On entry, the upper Hessenberg matrix H.
   87: *>          On exit, if INFO is zero and if WANTT is .TRUE., then H
   88: *>          is upper triangular in rows and columns ILO:IHI.  If INFO
   89: *>          is zero and if WANTT is .FALSE., then the contents of H
   90: *>          are unspecified on exit.  The output state of H in case
   91: *>          INF is positive is below under the description of INFO.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] LDH
   95: *> \verbatim
   96: *>          LDH is INTEGER
   97: *>          The leading dimension of the array H. LDH >= max(1,N).
   98: *> \endverbatim
   99: *>
  100: *> \param[out] W
  101: *> \verbatim
  102: *>          W is COMPLEX*16 array, dimension (N)
  103: *>          The computed eigenvalues ILO to IHI are stored in the
  104: *>          corresponding elements of W. If WANTT is .TRUE., the
  105: *>          eigenvalues are stored in the same order as on the diagonal
  106: *>          of the Schur form returned in H, with W(i) = H(i,i).
  107: *> \endverbatim
  108: *>
  109: *> \param[in] ILOZ
  110: *> \verbatim
  111: *>          ILOZ is INTEGER
  112: *> \endverbatim
  113: *>
  114: *> \param[in] IHIZ
  115: *> \verbatim
  116: *>          IHIZ is INTEGER
  117: *>          Specify the rows of Z to which transformations must be
  118: *>          applied if WANTZ is .TRUE..
  119: *>          1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
  120: *> \endverbatim
  121: *>
  122: *> \param[in,out] Z
  123: *> \verbatim
  124: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
  125: *>          If WANTZ is .TRUE., on entry Z must contain the current
  126: *>          matrix Z of transformations accumulated by CHSEQR, and on
  127: *>          exit Z has been updated; transformations are applied only to
  128: *>          the submatrix Z(ILOZ:IHIZ,ILO:IHI).
  129: *>          If WANTZ is .FALSE., Z is not referenced.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] LDZ
  133: *> \verbatim
  134: *>          LDZ is INTEGER
  135: *>          The leading dimension of the array Z. LDZ >= max(1,N).
  136: *> \endverbatim
  137: *>
  138: *> \param[out] INFO
  139: *> \verbatim
  140: *>          INFO is INTEGER
  141: *>           =   0: successful exit
  142: *>          .GT. 0: if INFO = i, ZLAHQR failed to compute all the
  143: *>                  eigenvalues ILO to IHI in a total of 30 iterations
  144: *>                  per eigenvalue; elements i+1:ihi of W contain
  145: *>                  those eigenvalues which have been successfully
  146: *>                  computed.
  147: *>
  148: *>                  If INFO .GT. 0 and WANTT is .FALSE., then on exit,
  149: *>                  the remaining unconverged eigenvalues are the
  150: *>                  eigenvalues of the upper Hessenberg matrix
  151: *>                  rows and columns ILO thorugh INFO of the final,
  152: *>                  output value of H.
  153: *>
  154: *>                  If INFO .GT. 0 and WANTT is .TRUE., then on exit
  155: *>          (*)       (initial value of H)*U  = U*(final value of H)
  156: *>                  where U is an orthognal matrix.    The final
  157: *>                  value of H is upper Hessenberg and triangular in
  158: *>                  rows and columns INFO+1 through IHI.
  159: *>
  160: *>                  If INFO .GT. 0 and WANTZ is .TRUE., then on exit
  161: *>                      (final value of Z)  = (initial value of Z)*U
  162: *>                  where U is the orthogonal matrix in (*)
  163: *>                  (regardless of the value of WANTT.)
  164: *> \endverbatim
  165: *
  166: *  Authors:
  167: *  ========
  168: *
  169: *> \author Univ. of Tennessee 
  170: *> \author Univ. of California Berkeley 
  171: *> \author Univ. of Colorado Denver 
  172: *> \author NAG Ltd. 
  173: *
  174: *> \date September 2012
  175: *
  176: *> \ingroup complex16OTHERauxiliary
  177: *
  178: *> \par Contributors:
  179: *  ==================
  180: *>
  181: *> \verbatim
  182: *>
  183: *>     02-96 Based on modifications by
  184: *>     David Day, Sandia National Laboratory, USA
  185: *>
  186: *>     12-04 Further modifications by
  187: *>     Ralph Byers, University of Kansas, USA
  188: *>     This is a modified version of ZLAHQR from LAPACK version 3.0.
  189: *>     It is (1) more robust against overflow and underflow and
  190: *>     (2) adopts the more conservative Ahues & Tisseur stopping
  191: *>     criterion (LAWN 122, 1997).
  192: *> \endverbatim
  193: *>
  194: *  =====================================================================
  195:       SUBROUTINE ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
  196:      $                   IHIZ, Z, LDZ, INFO )
  197: *
  198: *  -- LAPACK auxiliary routine (version 3.4.2) --
  199: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  200: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  201: *     September 2012
  202: *
  203: *     .. Scalar Arguments ..
  204:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
  205:       LOGICAL            WANTT, WANTZ
  206: *     ..
  207: *     .. Array Arguments ..
  208:       COMPLEX*16         H( LDH, * ), W( * ), Z( LDZ, * )
  209: *     ..
  210: *
  211: *  =========================================================
  212: *
  213: *     .. Parameters ..
  214:       INTEGER            ITMAX
  215:       PARAMETER          ( ITMAX = 30 )
  216:       COMPLEX*16         ZERO, ONE
  217:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
  218:      $                   ONE = ( 1.0d0, 0.0d0 ) )
  219:       DOUBLE PRECISION   RZERO, RONE, HALF
  220:       PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0, HALF = 0.5d0 )
  221:       DOUBLE PRECISION   DAT1
  222:       PARAMETER          ( DAT1 = 3.0d0 / 4.0d0 )
  223: *     ..
  224: *     .. Local Scalars ..
  225:       COMPLEX*16         CDUM, H11, H11S, H22, SC, SUM, T, T1, TEMP, U,
  226:      $                   V2, X, Y
  227:       DOUBLE PRECISION   AA, AB, BA, BB, H10, H21, RTEMP, S, SAFMAX,
  228:      $                   SAFMIN, SMLNUM, SX, T2, TST, ULP
  229:       INTEGER            I, I1, I2, ITS, J, JHI, JLO, K, L, M, NH, NZ
  230: *     ..
  231: *     .. Local Arrays ..
  232:       COMPLEX*16         V( 2 )
  233: *     ..
  234: *     .. External Functions ..
  235:       COMPLEX*16         ZLADIV
  236:       DOUBLE PRECISION   DLAMCH
  237:       EXTERNAL           ZLADIV, DLAMCH
  238: *     ..
  239: *     .. External Subroutines ..
  240:       EXTERNAL           DLABAD, ZCOPY, ZLARFG, ZSCAL
  241: *     ..
  242: *     .. Statement Functions ..
  243:       DOUBLE PRECISION   CABS1
  244: *     ..
  245: *     .. Intrinsic Functions ..
  246:       INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
  247: *     ..
  248: *     .. Statement Function definitions ..
  249:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  250: *     ..
  251: *     .. Executable Statements ..
  252: *
  253:       INFO = 0
  254: *
  255: *     Quick return if possible
  256: *
  257:       IF( N.EQ.0 )
  258:      $   RETURN
  259:       IF( ILO.EQ.IHI ) THEN
  260:          W( ILO ) = H( ILO, ILO )
  261:          RETURN
  262:       END IF
  263: *
  264: *     ==== clear out the trash ====
  265:       DO 10 J = ILO, IHI - 3
  266:          H( J+2, J ) = ZERO
  267:          H( J+3, J ) = ZERO
  268:    10 CONTINUE
  269:       IF( ILO.LE.IHI-2 )
  270:      $   H( IHI, IHI-2 ) = ZERO
  271: *     ==== ensure that subdiagonal entries are real ====
  272:       IF( WANTT ) THEN
  273:          JLO = 1
  274:          JHI = N
  275:       ELSE
  276:          JLO = ILO
  277:          JHI = IHI
  278:       END IF
  279:       DO 20 I = ILO + 1, IHI
  280:          IF( DIMAG( H( I, I-1 ) ).NE.RZERO ) THEN
  281: *           ==== The following redundant normalization
  282: *           .    avoids problems with both gradual and
  283: *           .    sudden underflow in ABS(H(I,I-1)) ====
  284:             SC = H( I, I-1 ) / CABS1( H( I, I-1 ) )
  285:             SC = DCONJG( SC ) / ABS( SC )
  286:             H( I, I-1 ) = ABS( H( I, I-1 ) )
  287:             CALL ZSCAL( JHI-I+1, SC, H( I, I ), LDH )
  288:             CALL ZSCAL( MIN( JHI, I+1 )-JLO+1, DCONJG( SC ),
  289:      $                  H( JLO, I ), 1 )
  290:             IF( WANTZ )
  291:      $         CALL ZSCAL( IHIZ-ILOZ+1, DCONJG( SC ), Z( ILOZ, I ), 1 )
  292:          END IF
  293:    20 CONTINUE
  294: *
  295:       NH = IHI - ILO + 1
  296:       NZ = IHIZ - ILOZ + 1
  297: *
  298: *     Set machine-dependent constants for the stopping criterion.
  299: *
  300:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  301:       SAFMAX = RONE / SAFMIN
  302:       CALL DLABAD( SAFMIN, SAFMAX )
  303:       ULP = DLAMCH( 'PRECISION' )
  304:       SMLNUM = SAFMIN*( DBLE( NH ) / ULP )
  305: *
  306: *     I1 and I2 are the indices of the first row and last column of H
  307: *     to which transformations must be applied. If eigenvalues only are
  308: *     being computed, I1 and I2 are set inside the main loop.
  309: *
  310:       IF( WANTT ) THEN
  311:          I1 = 1
  312:          I2 = N
  313:       END IF
  314: *
  315: *     The main loop begins here. I is the loop index and decreases from
  316: *     IHI to ILO in steps of 1. Each iteration of the loop works
  317: *     with the active submatrix in rows and columns L to I.
  318: *     Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
  319: *     H(L,L-1) is negligible so that the matrix splits.
  320: *
  321:       I = IHI
  322:    30 CONTINUE
  323:       IF( I.LT.ILO )
  324:      $   GO TO 150
  325: *
  326: *     Perform QR iterations on rows and columns ILO to I until a
  327: *     submatrix of order 1 splits off at the bottom because a
  328: *     subdiagonal element has become negligible.
  329: *
  330:       L = ILO
  331:       DO 130 ITS = 0, ITMAX
  332: *
  333: *        Look for a single small subdiagonal element.
  334: *
  335:          DO 40 K = I, L + 1, -1
  336:             IF( CABS1( H( K, K-1 ) ).LE.SMLNUM )
  337:      $         GO TO 50
  338:             TST = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
  339:             IF( TST.EQ.ZERO ) THEN
  340:                IF( K-2.GE.ILO )
  341:      $            TST = TST + ABS( DBLE( H( K-1, K-2 ) ) )
  342:                IF( K+1.LE.IHI )
  343:      $            TST = TST + ABS( DBLE( H( K+1, K ) ) )
  344:             END IF
  345: *           ==== The following is a conservative small subdiagonal
  346: *           .    deflation criterion due to Ahues & Tisseur (LAWN 122,
  347: *           .    1997). It has better mathematical foundation and
  348: *           .    improves accuracy in some examples.  ====
  349:             IF( ABS( DBLE( H( K, K-1 ) ) ).LE.ULP*TST ) THEN
  350:                AB = MAX( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
  351:                BA = MIN( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
  352:                AA = MAX( CABS1( H( K, K ) ),
  353:      $              CABS1( H( K-1, K-1 )-H( K, K ) ) )
  354:                BB = MIN( CABS1( H( K, K ) ),
  355:      $              CABS1( H( K-1, K-1 )-H( K, K ) ) )
  356:                S = AA + AB
  357:                IF( BA*( AB / S ).LE.MAX( SMLNUM,
  358:      $             ULP*( BB*( AA / S ) ) ) )GO TO 50
  359:             END IF
  360:    40    CONTINUE
  361:    50    CONTINUE
  362:          L = K
  363:          IF( L.GT.ILO ) THEN
  364: *
  365: *           H(L,L-1) is negligible
  366: *
  367:             H( L, L-1 ) = ZERO
  368:          END IF
  369: *
  370: *        Exit from loop if a submatrix of order 1 has split off.
  371: *
  372:          IF( L.GE.I )
  373:      $      GO TO 140
  374: *
  375: *        Now the active submatrix is in rows and columns L to I. If
  376: *        eigenvalues only are being computed, only the active submatrix
  377: *        need be transformed.
  378: *
  379:          IF( .NOT.WANTT ) THEN
  380:             I1 = L
  381:             I2 = I
  382:          END IF
  383: *
  384:          IF( ITS.EQ.10 ) THEN
  385: *
  386: *           Exceptional shift.
  387: *
  388:             S = DAT1*ABS( DBLE( H( L+1, L ) ) )
  389:             T = S + H( L, L )
  390:          ELSE IF( ITS.EQ.20 ) THEN
  391: *
  392: *           Exceptional shift.
  393: *
  394:             S = DAT1*ABS( DBLE( H( I, I-1 ) ) )
  395:             T = S + H( I, I )
  396:          ELSE
  397: *
  398: *           Wilkinson's shift.
  399: *
  400:             T = H( I, I )
  401:             U = SQRT( H( I-1, I ) )*SQRT( H( I, I-1 ) )
  402:             S = CABS1( U )
  403:             IF( S.NE.RZERO ) THEN
  404:                X = HALF*( H( I-1, I-1 )-T )
  405:                SX = CABS1( X )
  406:                S = MAX( S, CABS1( X ) )
  407:                Y = S*SQRT( ( X / S )**2+( U / S )**2 )
  408:                IF( SX.GT.RZERO ) THEN
  409:                   IF( DBLE( X / SX )*DBLE( Y )+DIMAG( X / SX )*
  410:      $                DIMAG( Y ).LT.RZERO )Y = -Y
  411:                END IF
  412:                T = T - U*ZLADIV( U, ( X+Y ) )
  413:             END IF
  414:          END IF
  415: *
  416: *        Look for two consecutive small subdiagonal elements.
  417: *
  418:          DO 60 M = I - 1, L + 1, -1
  419: *
  420: *           Determine the effect of starting the single-shift QR
  421: *           iteration at row M, and see if this would make H(M,M-1)
  422: *           negligible.
  423: *
  424:             H11 = H( M, M )
  425:             H22 = H( M+1, M+1 )
  426:             H11S = H11 - T
  427:             H21 = DBLE( H( M+1, M ) )
  428:             S = CABS1( H11S ) + ABS( H21 )
  429:             H11S = H11S / S
  430:             H21 = H21 / S
  431:             V( 1 ) = H11S
  432:             V( 2 ) = H21
  433:             H10 = DBLE( H( M, M-1 ) )
  434:             IF( ABS( H10 )*ABS( H21 ).LE.ULP*
  435:      $          ( CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) ) ) )
  436:      $          GO TO 70
  437:    60    CONTINUE
  438:          H11 = H( L, L )
  439:          H22 = H( L+1, L+1 )
  440:          H11S = H11 - T
  441:          H21 = DBLE( H( L+1, L ) )
  442:          S = CABS1( H11S ) + ABS( H21 )
  443:          H11S = H11S / S
  444:          H21 = H21 / S
  445:          V( 1 ) = H11S
  446:          V( 2 ) = H21
  447:    70    CONTINUE
  448: *
  449: *        Single-shift QR step
  450: *
  451:          DO 120 K = M, I - 1
  452: *
  453: *           The first iteration of this loop determines a reflection G
  454: *           from the vector V and applies it from left and right to H,
  455: *           thus creating a nonzero bulge below the subdiagonal.
  456: *
  457: *           Each subsequent iteration determines a reflection G to
  458: *           restore the Hessenberg form in the (K-1)th column, and thus
  459: *           chases the bulge one step toward the bottom of the active
  460: *           submatrix.
  461: *
  462: *           V(2) is always real before the call to ZLARFG, and hence
  463: *           after the call T2 ( = T1*V(2) ) is also real.
  464: *
  465:             IF( K.GT.M )
  466:      $         CALL ZCOPY( 2, H( K, K-1 ), 1, V, 1 )
  467:             CALL ZLARFG( 2, V( 1 ), V( 2 ), 1, T1 )
  468:             IF( K.GT.M ) THEN
  469:                H( K, K-1 ) = V( 1 )
  470:                H( K+1, K-1 ) = ZERO
  471:             END IF
  472:             V2 = V( 2 )
  473:             T2 = DBLE( T1*V2 )
  474: *
  475: *           Apply G from the left to transform the rows of the matrix
  476: *           in columns K to I2.
  477: *
  478:             DO 80 J = K, I2
  479:                SUM = DCONJG( T1 )*H( K, J ) + T2*H( K+1, J )
  480:                H( K, J ) = H( K, J ) - SUM
  481:                H( K+1, J ) = H( K+1, J ) - SUM*V2
  482:    80       CONTINUE
  483: *
  484: *           Apply G from the right to transform the columns of the
  485: *           matrix in rows I1 to min(K+2,I).
  486: *
  487:             DO 90 J = I1, MIN( K+2, I )
  488:                SUM = T1*H( J, K ) + T2*H( J, K+1 )
  489:                H( J, K ) = H( J, K ) - SUM
  490:                H( J, K+1 ) = H( J, K+1 ) - SUM*DCONJG( V2 )
  491:    90       CONTINUE
  492: *
  493:             IF( WANTZ ) THEN
  494: *
  495: *              Accumulate transformations in the matrix Z
  496: *
  497:                DO 100 J = ILOZ, IHIZ
  498:                   SUM = T1*Z( J, K ) + T2*Z( J, K+1 )
  499:                   Z( J, K ) = Z( J, K ) - SUM
  500:                   Z( J, K+1 ) = Z( J, K+1 ) - SUM*DCONJG( V2 )
  501:   100          CONTINUE
  502:             END IF
  503: *
  504:             IF( K.EQ.M .AND. M.GT.L ) THEN
  505: *
  506: *              If the QR step was started at row M > L because two
  507: *              consecutive small subdiagonals were found, then extra
  508: *              scaling must be performed to ensure that H(M,M-1) remains
  509: *              real.
  510: *
  511:                TEMP = ONE - T1
  512:                TEMP = TEMP / ABS( TEMP )
  513:                H( M+1, M ) = H( M+1, M )*DCONJG( TEMP )
  514:                IF( M+2.LE.I )
  515:      $            H( M+2, M+1 ) = H( M+2, M+1 )*TEMP
  516:                DO 110 J = M, I
  517:                   IF( J.NE.M+1 ) THEN
  518:                      IF( I2.GT.J )
  519:      $                  CALL ZSCAL( I2-J, TEMP, H( J, J+1 ), LDH )
  520:                      CALL ZSCAL( J-I1, DCONJG( TEMP ), H( I1, J ), 1 )
  521:                      IF( WANTZ ) THEN
  522:                         CALL ZSCAL( NZ, DCONJG( TEMP ), Z( ILOZ, J ),
  523:      $                              1 )
  524:                      END IF
  525:                   END IF
  526:   110          CONTINUE
  527:             END IF
  528:   120    CONTINUE
  529: *
  530: *        Ensure that H(I,I-1) is real.
  531: *
  532:          TEMP = H( I, I-1 )
  533:          IF( DIMAG( TEMP ).NE.RZERO ) THEN
  534:             RTEMP = ABS( TEMP )
  535:             H( I, I-1 ) = RTEMP
  536:             TEMP = TEMP / RTEMP
  537:             IF( I2.GT.I )
  538:      $         CALL ZSCAL( I2-I, DCONJG( TEMP ), H( I, I+1 ), LDH )
  539:             CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 )
  540:             IF( WANTZ ) THEN
  541:                CALL ZSCAL( NZ, TEMP, Z( ILOZ, I ), 1 )
  542:             END IF
  543:          END IF
  544: *
  545:   130 CONTINUE
  546: *
  547: *     Failure to converge in remaining number of iterations
  548: *
  549:       INFO = I
  550:       RETURN
  551: *
  552:   140 CONTINUE
  553: *
  554: *     H(I,I-1) is negligible: one eigenvalue has converged.
  555: *
  556:       W( I ) = H( I, I )
  557: *
  558: *     return to start of the main loop with new value of I.
  559: *
  560:       I = L - 1
  561:       GO TO 30
  562: *
  563:   150 CONTINUE
  564:       RETURN
  565: *
  566: *     End of ZLAHQR
  567: *
  568:       END

CVSweb interface <joel.bertrand@systella.fr>