Annotation of rpl/lapack/lapack/zlahqr.f, revision 1.13

1.11      bertrand    1: *> \brief \b ZLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZLAHQR + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahqr.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahqr.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahqr.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
                     22: *                          IHIZ, Z, LDZ, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
                     26: *       LOGICAL            WANTT, WANTZ
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       COMPLEX*16         H( LDH, * ), W( * ), Z( LDZ, * )
                     30: *       ..
                     31: *  
                     32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *>    ZLAHQR is an auxiliary routine called by CHSEQR to update the
                     39: *>    eigenvalues and Schur decomposition already computed by CHSEQR, by
                     40: *>    dealing with the Hessenberg submatrix in rows and columns ILO to
                     41: *>    IHI.
                     42: *> \endverbatim
                     43: *
                     44: *  Arguments:
                     45: *  ==========
                     46: *
                     47: *> \param[in] WANTT
                     48: *> \verbatim
                     49: *>          WANTT is LOGICAL
                     50: *>          = .TRUE. : the full Schur form T is required;
                     51: *>          = .FALSE.: only eigenvalues are required.
                     52: *> \endverbatim
                     53: *>
                     54: *> \param[in] WANTZ
                     55: *> \verbatim
                     56: *>          WANTZ is LOGICAL
                     57: *>          = .TRUE. : the matrix of Schur vectors Z is required;
                     58: *>          = .FALSE.: Schur vectors are not required.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] N
                     62: *> \verbatim
                     63: *>          N is INTEGER
                     64: *>          The order of the matrix H.  N >= 0.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] ILO
                     68: *> \verbatim
                     69: *>          ILO is INTEGER
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] IHI
                     73: *> \verbatim
                     74: *>          IHI is INTEGER
                     75: *>          It is assumed that H is already upper triangular in rows and
                     76: *>          columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1).
                     77: *>          ZLAHQR works primarily with the Hessenberg submatrix in rows
                     78: *>          and columns ILO to IHI, but applies transformations to all of
                     79: *>          H if WANTT is .TRUE..
                     80: *>          1 <= ILO <= max(1,IHI); IHI <= N.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in,out] H
                     84: *> \verbatim
                     85: *>          H is COMPLEX*16 array, dimension (LDH,N)
                     86: *>          On entry, the upper Hessenberg matrix H.
                     87: *>          On exit, if INFO is zero and if WANTT is .TRUE., then H
                     88: *>          is upper triangular in rows and columns ILO:IHI.  If INFO
                     89: *>          is zero and if WANTT is .FALSE., then the contents of H
                     90: *>          are unspecified on exit.  The output state of H in case
                     91: *>          INF is positive is below under the description of INFO.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] LDH
                     95: *> \verbatim
                     96: *>          LDH is INTEGER
                     97: *>          The leading dimension of the array H. LDH >= max(1,N).
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[out] W
                    101: *> \verbatim
                    102: *>          W is COMPLEX*16 array, dimension (N)
                    103: *>          The computed eigenvalues ILO to IHI are stored in the
                    104: *>          corresponding elements of W. If WANTT is .TRUE., the
                    105: *>          eigenvalues are stored in the same order as on the diagonal
                    106: *>          of the Schur form returned in H, with W(i) = H(i,i).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] ILOZ
                    110: *> \verbatim
                    111: *>          ILOZ is INTEGER
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] IHIZ
                    115: *> \verbatim
                    116: *>          IHIZ is INTEGER
                    117: *>          Specify the rows of Z to which transformations must be
                    118: *>          applied if WANTZ is .TRUE..
                    119: *>          1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in,out] Z
                    123: *> \verbatim
                    124: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
                    125: *>          If WANTZ is .TRUE., on entry Z must contain the current
                    126: *>          matrix Z of transformations accumulated by CHSEQR, and on
                    127: *>          exit Z has been updated; transformations are applied only to
                    128: *>          the submatrix Z(ILOZ:IHIZ,ILO:IHI).
                    129: *>          If WANTZ is .FALSE., Z is not referenced.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] LDZ
                    133: *> \verbatim
                    134: *>          LDZ is INTEGER
                    135: *>          The leading dimension of the array Z. LDZ >= max(1,N).
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[out] INFO
                    139: *> \verbatim
                    140: *>          INFO is INTEGER
                    141: *>           =   0: successful exit
                    142: *>          .GT. 0: if INFO = i, ZLAHQR failed to compute all the
                    143: *>                  eigenvalues ILO to IHI in a total of 30 iterations
                    144: *>                  per eigenvalue; elements i+1:ihi of W contain
                    145: *>                  those eigenvalues which have been successfully
                    146: *>                  computed.
                    147: *>
                    148: *>                  If INFO .GT. 0 and WANTT is .FALSE., then on exit,
                    149: *>                  the remaining unconverged eigenvalues are the
                    150: *>                  eigenvalues of the upper Hessenberg matrix
                    151: *>                  rows and columns ILO thorugh INFO of the final,
                    152: *>                  output value of H.
                    153: *>
                    154: *>                  If INFO .GT. 0 and WANTT is .TRUE., then on exit
                    155: *>          (*)       (initial value of H)*U  = U*(final value of H)
                    156: *>                  where U is an orthognal matrix.    The final
                    157: *>                  value of H is upper Hessenberg and triangular in
                    158: *>                  rows and columns INFO+1 through IHI.
                    159: *>
                    160: *>                  If INFO .GT. 0 and WANTZ is .TRUE., then on exit
                    161: *>                      (final value of Z)  = (initial value of Z)*U
                    162: *>                  where U is the orthogonal matrix in (*)
                    163: *>                  (regardless of the value of WANTT.)
                    164: *> \endverbatim
                    165: *
                    166: *  Authors:
                    167: *  ========
                    168: *
                    169: *> \author Univ. of Tennessee 
                    170: *> \author Univ. of California Berkeley 
                    171: *> \author Univ. of Colorado Denver 
                    172: *> \author NAG Ltd. 
                    173: *
1.11      bertrand  174: *> \date September 2012
1.8       bertrand  175: *
                    176: *> \ingroup complex16OTHERauxiliary
                    177: *
                    178: *> \par Contributors:
                    179: *  ==================
                    180: *>
                    181: *> \verbatim
                    182: *>
                    183: *>     02-96 Based on modifications by
                    184: *>     David Day, Sandia National Laboratory, USA
                    185: *>
                    186: *>     12-04 Further modifications by
                    187: *>     Ralph Byers, University of Kansas, USA
                    188: *>     This is a modified version of ZLAHQR from LAPACK version 3.0.
                    189: *>     It is (1) more robust against overflow and underflow and
                    190: *>     (2) adopts the more conservative Ahues & Tisseur stopping
                    191: *>     criterion (LAWN 122, 1997).
                    192: *> \endverbatim
                    193: *>
                    194: *  =====================================================================
1.1       bertrand  195:       SUBROUTINE ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
                    196:      $                   IHIZ, Z, LDZ, INFO )
                    197: *
1.11      bertrand  198: *  -- LAPACK auxiliary routine (version 3.4.2) --
1.8       bertrand  199: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    200: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.11      bertrand  201: *     September 2012
1.1       bertrand  202: *
                    203: *     .. Scalar Arguments ..
                    204:       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
                    205:       LOGICAL            WANTT, WANTZ
                    206: *     ..
                    207: *     .. Array Arguments ..
                    208:       COMPLEX*16         H( LDH, * ), W( * ), Z( LDZ, * )
                    209: *     ..
                    210: *
1.8       bertrand  211: *  =========================================================
1.1       bertrand  212: *
                    213: *     .. Parameters ..
                    214:       INTEGER            ITMAX
                    215:       PARAMETER          ( ITMAX = 30 )
                    216:       COMPLEX*16         ZERO, ONE
                    217:       PARAMETER          ( ZERO = ( 0.0d0, 0.0d0 ),
                    218:      $                   ONE = ( 1.0d0, 0.0d0 ) )
                    219:       DOUBLE PRECISION   RZERO, RONE, HALF
                    220:       PARAMETER          ( RZERO = 0.0d0, RONE = 1.0d0, HALF = 0.5d0 )
                    221:       DOUBLE PRECISION   DAT1
                    222:       PARAMETER          ( DAT1 = 3.0d0 / 4.0d0 )
                    223: *     ..
                    224: *     .. Local Scalars ..
                    225:       COMPLEX*16         CDUM, H11, H11S, H22, SC, SUM, T, T1, TEMP, U,
                    226:      $                   V2, X, Y
                    227:       DOUBLE PRECISION   AA, AB, BA, BB, H10, H21, RTEMP, S, SAFMAX,
                    228:      $                   SAFMIN, SMLNUM, SX, T2, TST, ULP
                    229:       INTEGER            I, I1, I2, ITS, J, JHI, JLO, K, L, M, NH, NZ
                    230: *     ..
                    231: *     .. Local Arrays ..
                    232:       COMPLEX*16         V( 2 )
                    233: *     ..
                    234: *     .. External Functions ..
                    235:       COMPLEX*16         ZLADIV
                    236:       DOUBLE PRECISION   DLAMCH
                    237:       EXTERNAL           ZLADIV, DLAMCH
                    238: *     ..
                    239: *     .. External Subroutines ..
                    240:       EXTERNAL           DLABAD, ZCOPY, ZLARFG, ZSCAL
                    241: *     ..
                    242: *     .. Statement Functions ..
                    243:       DOUBLE PRECISION   CABS1
                    244: *     ..
                    245: *     .. Intrinsic Functions ..
                    246:       INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
                    247: *     ..
                    248: *     .. Statement Function definitions ..
                    249:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    250: *     ..
                    251: *     .. Executable Statements ..
                    252: *
                    253:       INFO = 0
                    254: *
                    255: *     Quick return if possible
                    256: *
                    257:       IF( N.EQ.0 )
                    258:      $   RETURN
                    259:       IF( ILO.EQ.IHI ) THEN
                    260:          W( ILO ) = H( ILO, ILO )
                    261:          RETURN
                    262:       END IF
                    263: *
                    264: *     ==== clear out the trash ====
                    265:       DO 10 J = ILO, IHI - 3
                    266:          H( J+2, J ) = ZERO
                    267:          H( J+3, J ) = ZERO
                    268:    10 CONTINUE
                    269:       IF( ILO.LE.IHI-2 )
                    270:      $   H( IHI, IHI-2 ) = ZERO
                    271: *     ==== ensure that subdiagonal entries are real ====
                    272:       IF( WANTT ) THEN
                    273:          JLO = 1
                    274:          JHI = N
                    275:       ELSE
                    276:          JLO = ILO
                    277:          JHI = IHI
                    278:       END IF
                    279:       DO 20 I = ILO + 1, IHI
                    280:          IF( DIMAG( H( I, I-1 ) ).NE.RZERO ) THEN
                    281: *           ==== The following redundant normalization
                    282: *           .    avoids problems with both gradual and
                    283: *           .    sudden underflow in ABS(H(I,I-1)) ====
                    284:             SC = H( I, I-1 ) / CABS1( H( I, I-1 ) )
                    285:             SC = DCONJG( SC ) / ABS( SC )
                    286:             H( I, I-1 ) = ABS( H( I, I-1 ) )
                    287:             CALL ZSCAL( JHI-I+1, SC, H( I, I ), LDH )
                    288:             CALL ZSCAL( MIN( JHI, I+1 )-JLO+1, DCONJG( SC ),
                    289:      $                  H( JLO, I ), 1 )
                    290:             IF( WANTZ )
                    291:      $         CALL ZSCAL( IHIZ-ILOZ+1, DCONJG( SC ), Z( ILOZ, I ), 1 )
                    292:          END IF
                    293:    20 CONTINUE
                    294: *
                    295:       NH = IHI - ILO + 1
                    296:       NZ = IHIZ - ILOZ + 1
                    297: *
                    298: *     Set machine-dependent constants for the stopping criterion.
                    299: *
                    300:       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
                    301:       SAFMAX = RONE / SAFMIN
                    302:       CALL DLABAD( SAFMIN, SAFMAX )
                    303:       ULP = DLAMCH( 'PRECISION' )
                    304:       SMLNUM = SAFMIN*( DBLE( NH ) / ULP )
                    305: *
                    306: *     I1 and I2 are the indices of the first row and last column of H
                    307: *     to which transformations must be applied. If eigenvalues only are
                    308: *     being computed, I1 and I2 are set inside the main loop.
                    309: *
                    310:       IF( WANTT ) THEN
                    311:          I1 = 1
                    312:          I2 = N
                    313:       END IF
                    314: *
                    315: *     The main loop begins here. I is the loop index and decreases from
                    316: *     IHI to ILO in steps of 1. Each iteration of the loop works
                    317: *     with the active submatrix in rows and columns L to I.
                    318: *     Eigenvalues I+1 to IHI have already converged. Either L = ILO, or
                    319: *     H(L,L-1) is negligible so that the matrix splits.
                    320: *
                    321:       I = IHI
                    322:    30 CONTINUE
                    323:       IF( I.LT.ILO )
                    324:      $   GO TO 150
                    325: *
                    326: *     Perform QR iterations on rows and columns ILO to I until a
                    327: *     submatrix of order 1 splits off at the bottom because a
                    328: *     subdiagonal element has become negligible.
                    329: *
                    330:       L = ILO
                    331:       DO 130 ITS = 0, ITMAX
                    332: *
                    333: *        Look for a single small subdiagonal element.
                    334: *
                    335:          DO 40 K = I, L + 1, -1
                    336:             IF( CABS1( H( K, K-1 ) ).LE.SMLNUM )
                    337:      $         GO TO 50
                    338:             TST = CABS1( H( K-1, K-1 ) ) + CABS1( H( K, K ) )
                    339:             IF( TST.EQ.ZERO ) THEN
                    340:                IF( K-2.GE.ILO )
                    341:      $            TST = TST + ABS( DBLE( H( K-1, K-2 ) ) )
                    342:                IF( K+1.LE.IHI )
                    343:      $            TST = TST + ABS( DBLE( H( K+1, K ) ) )
                    344:             END IF
                    345: *           ==== The following is a conservative small subdiagonal
                    346: *           .    deflation criterion due to Ahues & Tisseur (LAWN 122,
                    347: *           .    1997). It has better mathematical foundation and
                    348: *           .    improves accuracy in some examples.  ====
                    349:             IF( ABS( DBLE( H( K, K-1 ) ) ).LE.ULP*TST ) THEN
                    350:                AB = MAX( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
                    351:                BA = MIN( CABS1( H( K, K-1 ) ), CABS1( H( K-1, K ) ) )
                    352:                AA = MAX( CABS1( H( K, K ) ),
                    353:      $              CABS1( H( K-1, K-1 )-H( K, K ) ) )
                    354:                BB = MIN( CABS1( H( K, K ) ),
                    355:      $              CABS1( H( K-1, K-1 )-H( K, K ) ) )
                    356:                S = AA + AB
                    357:                IF( BA*( AB / S ).LE.MAX( SMLNUM,
                    358:      $             ULP*( BB*( AA / S ) ) ) )GO TO 50
                    359:             END IF
                    360:    40    CONTINUE
                    361:    50    CONTINUE
                    362:          L = K
                    363:          IF( L.GT.ILO ) THEN
                    364: *
                    365: *           H(L,L-1) is negligible
                    366: *
                    367:             H( L, L-1 ) = ZERO
                    368:          END IF
                    369: *
                    370: *        Exit from loop if a submatrix of order 1 has split off.
                    371: *
                    372:          IF( L.GE.I )
                    373:      $      GO TO 140
                    374: *
                    375: *        Now the active submatrix is in rows and columns L to I. If
                    376: *        eigenvalues only are being computed, only the active submatrix
                    377: *        need be transformed.
                    378: *
                    379:          IF( .NOT.WANTT ) THEN
                    380:             I1 = L
                    381:             I2 = I
                    382:          END IF
                    383: *
                    384:          IF( ITS.EQ.10 ) THEN
                    385: *
                    386: *           Exceptional shift.
                    387: *
                    388:             S = DAT1*ABS( DBLE( H( L+1, L ) ) )
                    389:             T = S + H( L, L )
                    390:          ELSE IF( ITS.EQ.20 ) THEN
                    391: *
                    392: *           Exceptional shift.
                    393: *
                    394:             S = DAT1*ABS( DBLE( H( I, I-1 ) ) )
                    395:             T = S + H( I, I )
                    396:          ELSE
                    397: *
                    398: *           Wilkinson's shift.
                    399: *
                    400:             T = H( I, I )
                    401:             U = SQRT( H( I-1, I ) )*SQRT( H( I, I-1 ) )
                    402:             S = CABS1( U )
                    403:             IF( S.NE.RZERO ) THEN
                    404:                X = HALF*( H( I-1, I-1 )-T )
                    405:                SX = CABS1( X )
                    406:                S = MAX( S, CABS1( X ) )
                    407:                Y = S*SQRT( ( X / S )**2+( U / S )**2 )
                    408:                IF( SX.GT.RZERO ) THEN
                    409:                   IF( DBLE( X / SX )*DBLE( Y )+DIMAG( X / SX )*
                    410:      $                DIMAG( Y ).LT.RZERO )Y = -Y
                    411:                END IF
                    412:                T = T - U*ZLADIV( U, ( X+Y ) )
                    413:             END IF
                    414:          END IF
                    415: *
                    416: *        Look for two consecutive small subdiagonal elements.
                    417: *
                    418:          DO 60 M = I - 1, L + 1, -1
                    419: *
                    420: *           Determine the effect of starting the single-shift QR
                    421: *           iteration at row M, and see if this would make H(M,M-1)
                    422: *           negligible.
                    423: *
                    424:             H11 = H( M, M )
                    425:             H22 = H( M+1, M+1 )
                    426:             H11S = H11 - T
                    427:             H21 = DBLE( H( M+1, M ) )
                    428:             S = CABS1( H11S ) + ABS( H21 )
                    429:             H11S = H11S / S
                    430:             H21 = H21 / S
                    431:             V( 1 ) = H11S
                    432:             V( 2 ) = H21
                    433:             H10 = DBLE( H( M, M-1 ) )
                    434:             IF( ABS( H10 )*ABS( H21 ).LE.ULP*
                    435:      $          ( CABS1( H11S )*( CABS1( H11 )+CABS1( H22 ) ) ) )
                    436:      $          GO TO 70
                    437:    60    CONTINUE
                    438:          H11 = H( L, L )
                    439:          H22 = H( L+1, L+1 )
                    440:          H11S = H11 - T
                    441:          H21 = DBLE( H( L+1, L ) )
                    442:          S = CABS1( H11S ) + ABS( H21 )
                    443:          H11S = H11S / S
                    444:          H21 = H21 / S
                    445:          V( 1 ) = H11S
                    446:          V( 2 ) = H21
                    447:    70    CONTINUE
                    448: *
                    449: *        Single-shift QR step
                    450: *
                    451:          DO 120 K = M, I - 1
                    452: *
                    453: *           The first iteration of this loop determines a reflection G
                    454: *           from the vector V and applies it from left and right to H,
                    455: *           thus creating a nonzero bulge below the subdiagonal.
                    456: *
                    457: *           Each subsequent iteration determines a reflection G to
                    458: *           restore the Hessenberg form in the (K-1)th column, and thus
                    459: *           chases the bulge one step toward the bottom of the active
                    460: *           submatrix.
                    461: *
                    462: *           V(2) is always real before the call to ZLARFG, and hence
                    463: *           after the call T2 ( = T1*V(2) ) is also real.
                    464: *
                    465:             IF( K.GT.M )
                    466:      $         CALL ZCOPY( 2, H( K, K-1 ), 1, V, 1 )
                    467:             CALL ZLARFG( 2, V( 1 ), V( 2 ), 1, T1 )
                    468:             IF( K.GT.M ) THEN
                    469:                H( K, K-1 ) = V( 1 )
                    470:                H( K+1, K-1 ) = ZERO
                    471:             END IF
                    472:             V2 = V( 2 )
                    473:             T2 = DBLE( T1*V2 )
                    474: *
                    475: *           Apply G from the left to transform the rows of the matrix
                    476: *           in columns K to I2.
                    477: *
                    478:             DO 80 J = K, I2
                    479:                SUM = DCONJG( T1 )*H( K, J ) + T2*H( K+1, J )
                    480:                H( K, J ) = H( K, J ) - SUM
                    481:                H( K+1, J ) = H( K+1, J ) - SUM*V2
                    482:    80       CONTINUE
                    483: *
                    484: *           Apply G from the right to transform the columns of the
                    485: *           matrix in rows I1 to min(K+2,I).
                    486: *
                    487:             DO 90 J = I1, MIN( K+2, I )
                    488:                SUM = T1*H( J, K ) + T2*H( J, K+1 )
                    489:                H( J, K ) = H( J, K ) - SUM
                    490:                H( J, K+1 ) = H( J, K+1 ) - SUM*DCONJG( V2 )
                    491:    90       CONTINUE
                    492: *
                    493:             IF( WANTZ ) THEN
                    494: *
                    495: *              Accumulate transformations in the matrix Z
                    496: *
                    497:                DO 100 J = ILOZ, IHIZ
                    498:                   SUM = T1*Z( J, K ) + T2*Z( J, K+1 )
                    499:                   Z( J, K ) = Z( J, K ) - SUM
                    500:                   Z( J, K+1 ) = Z( J, K+1 ) - SUM*DCONJG( V2 )
                    501:   100          CONTINUE
                    502:             END IF
                    503: *
                    504:             IF( K.EQ.M .AND. M.GT.L ) THEN
                    505: *
                    506: *              If the QR step was started at row M > L because two
                    507: *              consecutive small subdiagonals were found, then extra
                    508: *              scaling must be performed to ensure that H(M,M-1) remains
                    509: *              real.
                    510: *
                    511:                TEMP = ONE - T1
                    512:                TEMP = TEMP / ABS( TEMP )
                    513:                H( M+1, M ) = H( M+1, M )*DCONJG( TEMP )
                    514:                IF( M+2.LE.I )
                    515:      $            H( M+2, M+1 ) = H( M+2, M+1 )*TEMP
                    516:                DO 110 J = M, I
                    517:                   IF( J.NE.M+1 ) THEN
                    518:                      IF( I2.GT.J )
                    519:      $                  CALL ZSCAL( I2-J, TEMP, H( J, J+1 ), LDH )
                    520:                      CALL ZSCAL( J-I1, DCONJG( TEMP ), H( I1, J ), 1 )
                    521:                      IF( WANTZ ) THEN
                    522:                         CALL ZSCAL( NZ, DCONJG( TEMP ), Z( ILOZ, J ),
                    523:      $                              1 )
                    524:                      END IF
                    525:                   END IF
                    526:   110          CONTINUE
                    527:             END IF
                    528:   120    CONTINUE
                    529: *
                    530: *        Ensure that H(I,I-1) is real.
                    531: *
                    532:          TEMP = H( I, I-1 )
                    533:          IF( DIMAG( TEMP ).NE.RZERO ) THEN
                    534:             RTEMP = ABS( TEMP )
                    535:             H( I, I-1 ) = RTEMP
                    536:             TEMP = TEMP / RTEMP
                    537:             IF( I2.GT.I )
                    538:      $         CALL ZSCAL( I2-I, DCONJG( TEMP ), H( I, I+1 ), LDH )
                    539:             CALL ZSCAL( I-I1, TEMP, H( I1, I ), 1 )
                    540:             IF( WANTZ ) THEN
                    541:                CALL ZSCAL( NZ, TEMP, Z( ILOZ, I ), 1 )
                    542:             END IF
                    543:          END IF
                    544: *
                    545:   130 CONTINUE
                    546: *
                    547: *     Failure to converge in remaining number of iterations
                    548: *
                    549:       INFO = I
                    550:       RETURN
                    551: *
                    552:   140 CONTINUE
                    553: *
                    554: *     H(I,I-1) is negligible: one eigenvalue has converged.
                    555: *
                    556:       W( I ) = H( I, I )
                    557: *
                    558: *     return to start of the main loop with new value of I.
                    559: *
                    560:       I = L - 1
                    561:       GO TO 30
                    562: *
                    563:   150 CONTINUE
                    564:       RETURN
                    565: *
                    566: *     End of ZLAHQR
                    567: *
                    568:       END

CVSweb interface <joel.bertrand@systella.fr>