File:  [local] / rpl / lapack / lapack / zlahef.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:29 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLAHEF computes a partial factorization of a complex Hermitian indefinite matrix using the Bunch-Kaufman diagonal pivoting method (blocked algorithm, calling Level 3 BLAS).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAHEF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAHEF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), W( LDW, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZLAHEF computes a partial factorization of a complex Hermitian
   39: *> matrix A using the Bunch-Kaufman diagonal pivoting method. The
   40: *> partial factorization has the form:
   41: *>
   42: *> A  =  ( I  U12 ) ( A11  0  ) (  I      0     )  if UPLO = 'U', or:
   43: *>       ( 0  U22 ) (  0   D  ) ( U12**H U22**H )
   44: *>
   45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**H L21**H )  if UPLO = 'L'
   46: *>       ( L21  I ) (  0  A22 ) (  0      I     )
   47: *>
   48: *> where the order of D is at most NB. The actual order is returned in
   49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
   50: *> Note that U**H denotes the conjugate transpose of U.
   51: *>
   52: *> ZLAHEF is an auxiliary routine called by ZHETRF. It uses blocked code
   53: *> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
   54: *> A22 (if UPLO = 'L').
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] UPLO
   61: *> \verbatim
   62: *>          UPLO is CHARACTER*1
   63: *>          Specifies whether the upper or lower triangular part of the
   64: *>          Hermitian matrix A is stored:
   65: *>          = 'U':  Upper triangular
   66: *>          = 'L':  Lower triangular
   67: *> \endverbatim
   68: *>
   69: *> \param[in] N
   70: *> \verbatim
   71: *>          N is INTEGER
   72: *>          The order of the matrix A.  N >= 0.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] NB
   76: *> \verbatim
   77: *>          NB is INTEGER
   78: *>          The maximum number of columns of the matrix A that should be
   79: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
   80: *>          blocks.
   81: *> \endverbatim
   82: *>
   83: *> \param[out] KB
   84: *> \verbatim
   85: *>          KB is INTEGER
   86: *>          The number of columns of A that were actually factored.
   87: *>          KB is either NB-1 or NB, or N if N <= NB.
   88: *> \endverbatim
   89: *>
   90: *> \param[in,out] A
   91: *> \verbatim
   92: *>          A is COMPLEX*16 array, dimension (LDA,N)
   93: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
   94: *>          n-by-n upper triangular part of A contains the upper
   95: *>          triangular part of the matrix A, and the strictly lower
   96: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   97: *>          leading n-by-n lower triangular part of A contains the lower
   98: *>          triangular part of the matrix A, and the strictly upper
   99: *>          triangular part of A is not referenced.
  100: *>          On exit, A contains details of the partial factorization.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>          The leading dimension of the array A.  LDA >= max(1,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[out] IPIV
  110: *> \verbatim
  111: *>          IPIV is INTEGER array, dimension (N)
  112: *>          Details of the interchanges and the block structure of D.
  113: *>
  114: *>          If UPLO = 'U':
  115: *>             Only the last KB elements of IPIV are set.
  116: *>
  117: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  118: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  119: *>
  120: *>             If IPIV(k) = IPIV(k-1) < 0, then rows and columns
  121: *>             k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  122: *>             is a 2-by-2 diagonal block.
  123: *>
  124: *>          If UPLO = 'L':
  125: *>             Only the first KB elements of IPIV are set.
  126: *>
  127: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  128: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
  129: *>
  130: *>             If IPIV(k) = IPIV(k+1) < 0, then rows and columns
  131: *>             k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
  132: *>             is a 2-by-2 diagonal block.
  133: *> \endverbatim
  134: *>
  135: *> \param[out] W
  136: *> \verbatim
  137: *>          W is COMPLEX*16 array, dimension (LDW,NB)
  138: *> \endverbatim
  139: *>
  140: *> \param[in] LDW
  141: *> \verbatim
  142: *>          LDW is INTEGER
  143: *>          The leading dimension of the array W.  LDW >= max(1,N).
  144: *> \endverbatim
  145: *>
  146: *> \param[out] INFO
  147: *> \verbatim
  148: *>          INFO is INTEGER
  149: *>          = 0: successful exit
  150: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
  151: *>               has been completed, but the block diagonal matrix D is
  152: *>               exactly singular.
  153: *> \endverbatim
  154: *
  155: *  Authors:
  156: *  ========
  157: *
  158: *> \author Univ. of Tennessee
  159: *> \author Univ. of California Berkeley
  160: *> \author Univ. of Colorado Denver
  161: *> \author NAG Ltd.
  162: *
  163: *> \ingroup complex16HEcomputational
  164: *
  165: *> \par Contributors:
  166: *  ==================
  167: *>
  168: *> \verbatim
  169: *>
  170: *>  December 2016,  Igor Kozachenko,
  171: *>                  Computer Science Division,
  172: *>                  University of California, Berkeley
  173: *> \endverbatim
  174: *
  175: *  =====================================================================
  176:       SUBROUTINE ZLAHEF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
  177: *
  178: *  -- LAPACK computational routine --
  179: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  180: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181: *
  182: *     .. Scalar Arguments ..
  183:       CHARACTER          UPLO
  184:       INTEGER            INFO, KB, LDA, LDW, N, NB
  185: *     ..
  186: *     .. Array Arguments ..
  187:       INTEGER            IPIV( * )
  188:       COMPLEX*16         A( LDA, * ), W( LDW, * )
  189: *     ..
  190: *
  191: *  =====================================================================
  192: *
  193: *     .. Parameters ..
  194:       DOUBLE PRECISION   ZERO, ONE
  195:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  196:       COMPLEX*16         CONE
  197:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  198:       DOUBLE PRECISION   EIGHT, SEVTEN
  199:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  200: *     ..
  201: *     .. Local Scalars ..
  202:       INTEGER            IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
  203:      $                   KSTEP, KW
  204:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, R1, ROWMAX, T
  205:       COMPLEX*16         D11, D21, D22, Z
  206: *     ..
  207: *     .. External Functions ..
  208:       LOGICAL            LSAME
  209:       INTEGER            IZAMAX
  210:       EXTERNAL           LSAME, IZAMAX
  211: *     ..
  212: *     .. External Subroutines ..
  213:       EXTERNAL           ZCOPY, ZDSCAL, ZGEMM, ZGEMV, ZLACGV, ZSWAP
  214: *     ..
  215: *     .. Intrinsic Functions ..
  216:       INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
  217: *     ..
  218: *     .. Statement Functions ..
  219:       DOUBLE PRECISION   CABS1
  220: *     ..
  221: *     .. Statement Function definitions ..
  222:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  223: *     ..
  224: *     .. Executable Statements ..
  225: *
  226:       INFO = 0
  227: *
  228: *     Initialize ALPHA for use in choosing pivot block size.
  229: *
  230:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  231: *
  232:       IF( LSAME( UPLO, 'U' ) ) THEN
  233: *
  234: *        Factorize the trailing columns of A using the upper triangle
  235: *        of A and working backwards, and compute the matrix W = U12*D
  236: *        for use in updating A11 (note that conjg(W) is actually stored)
  237: *
  238: *        K is the main loop index, decreasing from N in steps of 1 or 2
  239: *
  240: *        KW is the column of W which corresponds to column K of A
  241: *
  242:          K = N
  243:    10    CONTINUE
  244:          KW = NB + K - N
  245: *
  246: *        Exit from loop
  247: *
  248:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  249:      $      GO TO 30
  250: *
  251:          KSTEP = 1
  252: *
  253: *        Copy column K of A to column KW of W and update it
  254: *
  255:          CALL ZCOPY( K-1, A( 1, K ), 1, W( 1, KW ), 1 )
  256:          W( K, KW ) = DBLE( A( K, K ) )
  257:          IF( K.LT.N ) THEN
  258:             CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
  259:      $                  W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  260:             W( K, KW ) = DBLE( W( K, KW ) )
  261:          END IF
  262: *
  263: *        Determine rows and columns to be interchanged and whether
  264: *        a 1-by-1 or 2-by-2 pivot block will be used
  265: *
  266:          ABSAKK = ABS( DBLE( W( K, KW ) ) )
  267: *
  268: *        IMAX is the row-index of the largest off-diagonal element in
  269: *        column K, and COLMAX is its absolute value.
  270: *        Determine both COLMAX and IMAX.
  271: *
  272:          IF( K.GT.1 ) THEN
  273:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  274:             COLMAX = CABS1( W( IMAX, KW ) )
  275:          ELSE
  276:             COLMAX = ZERO
  277:          END IF
  278: *
  279:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  280: *
  281: *           Column K is zero or underflow: set INFO and continue
  282: *
  283:             IF( INFO.EQ.0 )
  284:      $         INFO = K
  285:             KP = K
  286:             A( K, K ) = DBLE( A( K, K ) )
  287:          ELSE
  288: *
  289: *           ============================================================
  290: *
  291: *           BEGIN pivot search
  292: *
  293: *           Case(1)
  294:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  295: *
  296: *              no interchange, use 1-by-1 pivot block
  297: *
  298:                KP = K
  299:             ELSE
  300: *
  301: *              BEGIN pivot search along IMAX row
  302: *
  303: *
  304: *              Copy column IMAX to column KW-1 of W and update it
  305: *
  306:                CALL ZCOPY( IMAX-1, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  307:                W( IMAX, KW-1 ) = DBLE( A( IMAX, IMAX ) )
  308:                CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  309:      $                     W( IMAX+1, KW-1 ), 1 )
  310:                CALL ZLACGV( K-IMAX, W( IMAX+1, KW-1 ), 1 )
  311:                IF( K.LT.N ) THEN
  312:                   CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  313:      $                        A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  314:      $                        CONE, W( 1, KW-1 ), 1 )
  315:                   W( IMAX, KW-1 ) = DBLE( W( IMAX, KW-1 ) )
  316:                END IF
  317: *
  318: *              JMAX is the column-index of the largest off-diagonal
  319: *              element in row IMAX, and ROWMAX is its absolute value.
  320: *              Determine only ROWMAX.
  321: *
  322:                JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
  323:                ROWMAX = CABS1( W( JMAX, KW-1 ) )
  324:                IF( IMAX.GT.1 ) THEN
  325:                   JMAX = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  326:                   ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, KW-1 ) ) )
  327:                END IF
  328: *
  329: *              Case(2)
  330:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  331: *
  332: *                 no interchange, use 1-by-1 pivot block
  333: *
  334:                   KP = K
  335: *
  336: *              Case(3)
  337:                ELSE IF( ABS( DBLE( W( IMAX, KW-1 ) ) ).GE.ALPHA*ROWMAX )
  338:      $                   THEN
  339: *
  340: *                 interchange rows and columns K and IMAX, use 1-by-1
  341: *                 pivot block
  342: *
  343:                   KP = IMAX
  344: *
  345: *                 copy column KW-1 of W to column KW of W
  346: *
  347:                   CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  348: *
  349: *              Case(4)
  350:                ELSE
  351: *
  352: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
  353: *                 pivot block
  354: *
  355:                   KP = IMAX
  356:                   KSTEP = 2
  357:                END IF
  358: *
  359: *
  360: *              END pivot search along IMAX row
  361: *
  362:             END IF
  363: *
  364: *           END pivot search
  365: *
  366: *           ============================================================
  367: *
  368: *           KK is the column of A where pivoting step stopped
  369: *
  370:             KK = K - KSTEP + 1
  371: *
  372: *           KKW is the column of W which corresponds to column KK of A
  373: *
  374:             KKW = NB + KK - N
  375: *
  376: *           Interchange rows and columns KP and KK.
  377: *           Updated column KP is already stored in column KKW of W.
  378: *
  379:             IF( KP.NE.KK ) THEN
  380: *
  381: *              Copy non-updated column KK to column KP of submatrix A
  382: *              at step K. No need to copy element into column K
  383: *              (or K and K-1 for 2-by-2 pivot) of A, since these columns
  384: *              will be later overwritten.
  385: *
  386:                A( KP, KP ) = DBLE( A( KK, KK ) )
  387:                CALL ZCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  388:      $                     LDA )
  389:                CALL ZLACGV( KK-1-KP, A( KP, KP+1 ), LDA )
  390:                IF( KP.GT.1 )
  391:      $            CALL ZCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  392: *
  393: *              Interchange rows KK and KP in last K+1 to N columns of A
  394: *              (columns K (or K and K-1 for 2-by-2 pivot) of A will be
  395: *              later overwritten). Interchange rows KK and KP
  396: *              in last KKW to NB columns of W.
  397: *
  398:                IF( K.LT.N )
  399:      $            CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
  400:      $                        LDA )
  401:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  402:      $                     LDW )
  403:             END IF
  404: *
  405:             IF( KSTEP.EQ.1 ) THEN
  406: *
  407: *              1-by-1 pivot block D(k): column kw of W now holds
  408: *
  409: *              W(kw) = U(k)*D(k),
  410: *
  411: *              where U(k) is the k-th column of U
  412: *
  413: *              (1) Store subdiag. elements of column U(k)
  414: *              and 1-by-1 block D(k) in column k of A.
  415: *              (NOTE: Diagonal element U(k,k) is a UNIT element
  416: *              and not stored)
  417: *                 A(k,k) := D(k,k) = W(k,kw)
  418: *                 A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
  419: *
  420: *              (NOTE: No need to use for Hermitian matrix
  421: *              A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
  422: *              element D(k,k) from W (potentially saves only one load))
  423:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  424:                IF( K.GT.1 ) THEN
  425: *
  426: *                 (NOTE: No need to check if A(k,k) is NOT ZERO,
  427: *                  since that was ensured earlier in pivot search:
  428: *                  case A(k,k) = 0 falls into 2x2 pivot case(4))
  429: *
  430:                   R1 = ONE / DBLE( A( K, K ) )
  431:                   CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
  432: *
  433: *                 (2) Conjugate column W(kw)
  434: *
  435:                   CALL ZLACGV( K-1, W( 1, KW ), 1 )
  436:                END IF
  437: *
  438:             ELSE
  439: *
  440: *              2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
  441: *
  442: *              ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
  443: *
  444: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
  445: *              of U
  446: *
  447: *              (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
  448: *              block D(k-1:k,k-1:k) in columns k-1 and k of A.
  449: *              (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
  450: *              block and not stored)
  451: *                 A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
  452: *                 A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
  453: *                 = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
  454: *
  455:                IF( K.GT.2 ) THEN
  456: *
  457: *                 Factor out the columns of the inverse of 2-by-2 pivot
  458: *                 block D, so that each column contains 1, to reduce the
  459: *                 number of FLOPS when we multiply panel
  460: *                 ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
  461: *
  462: *                 D**(-1) = ( d11 cj(d21) )**(-1) =
  463: *                           ( d21    d22 )
  464: *
  465: *                 = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
  466: *                                          ( (-d21) (     d11 ) )
  467: *
  468: *                 = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
  469: *
  470: *                   * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
  471: *                     (     (      -1 )           ( d11/conj(d21) ) )
  472: *
  473: *                 = 1/(|d21|**2) * 1/(D22*D11-1) *
  474: *
  475: *                   * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  476: *                     (     (  -1 )           ( D22 ) )
  477: *
  478: *                 = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  479: *                                      (     (  -1 )           ( D22 ) )
  480: *
  481: *                 = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
  482: *                   (               (  -1 )         ( D22 ) )
  483: *
  484: *                 = ( conj(D21)*( D11 ) D21*(  -1 ) )
  485: *                   (           (  -1 )     ( D22 ) ),
  486: *
  487: *                 where D11 = d22/d21,
  488: *                       D22 = d11/conj(d21),
  489: *                       D21 = T/d21,
  490: *                       T = 1/(D22*D11-1).
  491: *
  492: *                 (NOTE: No need to check for division by ZERO,
  493: *                  since that was ensured earlier in pivot search:
  494: *                  (a) d21 != 0, since in 2x2 pivot case(4)
  495: *                      |d21| should be larger than |d11| and |d22|;
  496: *                  (b) (D22*D11 - 1) != 0, since from (a),
  497: *                      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
  498: *
  499:                   D21 = W( K-1, KW )
  500:                   D11 = W( K, KW ) / DCONJG( D21 )
  501:                   D22 = W( K-1, KW-1 ) / D21
  502:                   T = ONE / ( DBLE( D11*D22 )-ONE )
  503:                   D21 = T / D21
  504: *
  505: *                 Update elements in columns A(k-1) and A(k) as
  506: *                 dot products of rows of ( W(kw-1) W(kw) ) and columns
  507: *                 of D**(-1)
  508: *
  509:                   DO 20 J = 1, K - 2
  510:                      A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
  511:                      A( J, K ) = DCONJG( D21 )*
  512:      $                           ( D22*W( J, KW )-W( J, KW-1 ) )
  513:    20             CONTINUE
  514:                END IF
  515: *
  516: *              Copy D(k) to A
  517: *
  518:                A( K-1, K-1 ) = W( K-1, KW-1 )
  519:                A( K-1, K ) = W( K-1, KW )
  520:                A( K, K ) = W( K, KW )
  521: *
  522: *              (2) Conjugate columns W(kw) and W(kw-1)
  523: *
  524:                CALL ZLACGV( K-1, W( 1, KW ), 1 )
  525:                CALL ZLACGV( K-2, W( 1, KW-1 ), 1 )
  526: *
  527:             END IF
  528: *
  529:          END IF
  530: *
  531: *        Store details of the interchanges in IPIV
  532: *
  533:          IF( KSTEP.EQ.1 ) THEN
  534:             IPIV( K ) = KP
  535:          ELSE
  536:             IPIV( K ) = -KP
  537:             IPIV( K-1 ) = -KP
  538:          END IF
  539: *
  540: *        Decrease K and return to the start of the main loop
  541: *
  542:          K = K - KSTEP
  543:          GO TO 10
  544: *
  545:    30    CONTINUE
  546: *
  547: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
  548: *
  549: *        A11 := A11 - U12*D*U12**H = A11 - U12*W**H
  550: *
  551: *        computing blocks of NB columns at a time (note that conjg(W) is
  552: *        actually stored)
  553: *
  554:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  555:             JB = MIN( NB, K-J+1 )
  556: *
  557: *           Update the upper triangle of the diagonal block
  558: *
  559:             DO 40 JJ = J, J + JB - 1
  560:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  561:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  562:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  563:      $                     A( J, JJ ), 1 )
  564:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  565:    40       CONTINUE
  566: *
  567: *           Update the rectangular superdiagonal block
  568: *
  569:             CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
  570:      $                  -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
  571:      $                  CONE, A( 1, J ), LDA )
  572:    50    CONTINUE
  573: *
  574: *        Put U12 in standard form by partially undoing the interchanges
  575: *        in columns k+1:n looping backwards from k+1 to n
  576: *
  577:          J = K + 1
  578:    60    CONTINUE
  579: *
  580: *           Undo the interchanges (if any) of rows JJ and JP at each
  581: *           step J
  582: *
  583: *           (Here, J is a diagonal index)
  584:             JJ = J
  585:             JP = IPIV( J )
  586:             IF( JP.LT.0 ) THEN
  587:                JP = -JP
  588: *              (Here, J is a diagonal index)
  589:                J = J + 1
  590:             END IF
  591: *           (NOTE: Here, J is used to determine row length. Length N-J+1
  592: *           of the rows to swap back doesn't include diagonal element)
  593:             J = J + 1
  594:             IF( JP.NE.JJ .AND. J.LE.N )
  595:      $         CALL ZSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
  596:          IF( J.LT.N )
  597:      $      GO TO 60
  598: *
  599: *        Set KB to the number of columns factorized
  600: *
  601:          KB = N - K
  602: *
  603:       ELSE
  604: *
  605: *        Factorize the leading columns of A using the lower triangle
  606: *        of A and working forwards, and compute the matrix W = L21*D
  607: *        for use in updating A22 (note that conjg(W) is actually stored)
  608: *
  609: *        K is the main loop index, increasing from 1 in steps of 1 or 2
  610: *
  611:          K = 1
  612:    70    CONTINUE
  613: *
  614: *        Exit from loop
  615: *
  616:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  617:      $      GO TO 90
  618: *
  619:          KSTEP = 1
  620: *
  621: *        Copy column K of A to column K of W and update it
  622: *
  623:          W( K, K ) = DBLE( A( K, K ) )
  624:          IF( K.LT.N )
  625:      $      CALL ZCOPY( N-K, A( K+1, K ), 1, W( K+1, K ), 1 )
  626:          CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ), LDA,
  627:      $               W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  628:          W( K, K ) = DBLE( W( K, K ) )
  629: *
  630: *        Determine rows and columns to be interchanged and whether
  631: *        a 1-by-1 or 2-by-2 pivot block will be used
  632: *
  633:          ABSAKK = ABS( DBLE( W( K, K ) ) )
  634: *
  635: *        IMAX is the row-index of the largest off-diagonal element in
  636: *        column K, and COLMAX is its absolute value.
  637: *        Determine both COLMAX and IMAX.
  638: *
  639:          IF( K.LT.N ) THEN
  640:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  641:             COLMAX = CABS1( W( IMAX, K ) )
  642:          ELSE
  643:             COLMAX = ZERO
  644:          END IF
  645: *
  646:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  647: *
  648: *           Column K is zero or underflow: set INFO and continue
  649: *
  650:             IF( INFO.EQ.0 )
  651:      $         INFO = K
  652:             KP = K
  653:             A( K, K ) = DBLE( A( K, K ) )
  654:          ELSE
  655: *
  656: *           ============================================================
  657: *
  658: *           BEGIN pivot search
  659: *
  660: *           Case(1)
  661:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  662: *
  663: *              no interchange, use 1-by-1 pivot block
  664: *
  665:                KP = K
  666:             ELSE
  667: *
  668: *              BEGIN pivot search along IMAX row
  669: *
  670: *
  671: *              Copy column IMAX to column K+1 of W and update it
  672: *
  673:                CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
  674:                CALL ZLACGV( IMAX-K, W( K, K+1 ), 1 )
  675:                W( IMAX, K+1 ) = DBLE( A( IMAX, IMAX ) )
  676:                IF( IMAX.LT.N )
  677:      $            CALL ZCOPY( N-IMAX, A( IMAX+1, IMAX ), 1,
  678:      $                        W( IMAX+1, K+1 ), 1 )
  679:                CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  680:      $                     LDA, W( IMAX, 1 ), LDW, CONE, W( K, K+1 ),
  681:      $                     1 )
  682:                W( IMAX, K+1 ) = DBLE( W( IMAX, K+1 ) )
  683: *
  684: *              JMAX is the column-index of the largest off-diagonal
  685: *              element in row IMAX, and ROWMAX is its absolute value.
  686: *              Determine only ROWMAX.
  687: *
  688:                JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  689:                ROWMAX = CABS1( W( JMAX, K+1 ) )
  690:                IF( IMAX.LT.N ) THEN
  691:                   JMAX = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
  692:                   ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, K+1 ) ) )
  693:                END IF
  694: *
  695: *              Case(2)
  696:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  697: *
  698: *                 no interchange, use 1-by-1 pivot block
  699: *
  700:                   KP = K
  701: *
  702: *              Case(3)
  703:                ELSE IF( ABS( DBLE( W( IMAX, K+1 ) ) ).GE.ALPHA*ROWMAX )
  704:      $                   THEN
  705: *
  706: *                 interchange rows and columns K and IMAX, use 1-by-1
  707: *                 pivot block
  708: *
  709:                   KP = IMAX
  710: *
  711: *                 copy column K+1 of W to column K of W
  712: *
  713:                   CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  714: *
  715: *              Case(4)
  716:                ELSE
  717: *
  718: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
  719: *                 pivot block
  720: *
  721:                   KP = IMAX
  722:                   KSTEP = 2
  723:                END IF
  724: *
  725: *
  726: *              END pivot search along IMAX row
  727: *
  728:             END IF
  729: *
  730: *           END pivot search
  731: *
  732: *           ============================================================
  733: *
  734: *           KK is the column of A where pivoting step stopped
  735: *
  736:             KK = K + KSTEP - 1
  737: *
  738: *           Interchange rows and columns KP and KK.
  739: *           Updated column KP is already stored in column KK of W.
  740: *
  741:             IF( KP.NE.KK ) THEN
  742: *
  743: *              Copy non-updated column KK to column KP of submatrix A
  744: *              at step K. No need to copy element into column K
  745: *              (or K and K+1 for 2-by-2 pivot) of A, since these columns
  746: *              will be later overwritten.
  747: *
  748:                A( KP, KP ) = DBLE( A( KK, KK ) )
  749:                CALL ZCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  750:      $                     LDA )
  751:                CALL ZLACGV( KP-KK-1, A( KP, KK+1 ), LDA )
  752:                IF( KP.LT.N )
  753:      $            CALL ZCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  754: *
  755: *              Interchange rows KK and KP in first K-1 columns of A
  756: *              (columns K (or K and K+1 for 2-by-2 pivot) of A will be
  757: *              later overwritten). Interchange rows KK and KP
  758: *              in first KK columns of W.
  759: *
  760:                IF( K.GT.1 )
  761:      $            CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  762:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  763:             END IF
  764: *
  765:             IF( KSTEP.EQ.1 ) THEN
  766: *
  767: *              1-by-1 pivot block D(k): column k of W now holds
  768: *
  769: *              W(k) = L(k)*D(k),
  770: *
  771: *              where L(k) is the k-th column of L
  772: *
  773: *              (1) Store subdiag. elements of column L(k)
  774: *              and 1-by-1 block D(k) in column k of A.
  775: *              (NOTE: Diagonal element L(k,k) is a UNIT element
  776: *              and not stored)
  777: *                 A(k,k) := D(k,k) = W(k,k)
  778: *                 A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
  779: *
  780: *              (NOTE: No need to use for Hermitian matrix
  781: *              A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
  782: *              element D(k,k) from W (potentially saves only one load))
  783:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  784:                IF( K.LT.N ) THEN
  785: *
  786: *                 (NOTE: No need to check if A(k,k) is NOT ZERO,
  787: *                  since that was ensured earlier in pivot search:
  788: *                  case A(k,k) = 0 falls into 2x2 pivot case(4))
  789: *
  790:                   R1 = ONE / DBLE( A( K, K ) )
  791:                   CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
  792: *
  793: *                 (2) Conjugate column W(k)
  794: *
  795:                   CALL ZLACGV( N-K, W( K+1, K ), 1 )
  796:                END IF
  797: *
  798:             ELSE
  799: *
  800: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
  801: *
  802: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  803: *
  804: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
  805: *              of L
  806: *
  807: *              (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
  808: *              block D(k:k+1,k:k+1) in columns k and k+1 of A.
  809: *              (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
  810: *              block and not stored)
  811: *                 A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
  812: *                 A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
  813: *                 = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
  814: *
  815:                IF( K.LT.N-1 ) THEN
  816: *
  817: *                 Factor out the columns of the inverse of 2-by-2 pivot
  818: *                 block D, so that each column contains 1, to reduce the
  819: *                 number of FLOPS when we multiply panel
  820: *                 ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
  821: *
  822: *                 D**(-1) = ( d11 cj(d21) )**(-1) =
  823: *                           ( d21    d22 )
  824: *
  825: *                 = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
  826: *                                          ( (-d21) (     d11 ) )
  827: *
  828: *                 = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
  829: *
  830: *                   * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
  831: *                     (     (      -1 )           ( d11/conj(d21) ) )
  832: *
  833: *                 = 1/(|d21|**2) * 1/(D22*D11-1) *
  834: *
  835: *                   * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  836: *                     (     (  -1 )           ( D22 ) )
  837: *
  838: *                 = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
  839: *                                      (     (  -1 )           ( D22 ) )
  840: *
  841: *                 = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
  842: *                   (               (  -1 )         ( D22 ) )
  843: *
  844: *                 = ( conj(D21)*( D11 ) D21*(  -1 ) )
  845: *                   (           (  -1 )     ( D22 ) ),
  846: *
  847: *                 where D11 = d22/d21,
  848: *                       D22 = d11/conj(d21),
  849: *                       D21 = T/d21,
  850: *                       T = 1/(D22*D11-1).
  851: *
  852: *                 (NOTE: No need to check for division by ZERO,
  853: *                  since that was ensured earlier in pivot search:
  854: *                  (a) d21 != 0, since in 2x2 pivot case(4)
  855: *                      |d21| should be larger than |d11| and |d22|;
  856: *                  (b) (D22*D11 - 1) != 0, since from (a),
  857: *                      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
  858: *
  859:                   D21 = W( K+1, K )
  860:                   D11 = W( K+1, K+1 ) / D21
  861:                   D22 = W( K, K ) / DCONJG( D21 )
  862:                   T = ONE / ( DBLE( D11*D22 )-ONE )
  863:                   D21 = T / D21
  864: *
  865: *                 Update elements in columns A(k) and A(k+1) as
  866: *                 dot products of rows of ( W(k) W(k+1) ) and columns
  867: *                 of D**(-1)
  868: *
  869:                   DO 80 J = K + 2, N
  870:                      A( J, K ) = DCONJG( D21 )*
  871:      $                           ( D11*W( J, K )-W( J, K+1 ) )
  872:                      A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
  873:    80             CONTINUE
  874:                END IF
  875: *
  876: *              Copy D(k) to A
  877: *
  878:                A( K, K ) = W( K, K )
  879:                A( K+1, K ) = W( K+1, K )
  880:                A( K+1, K+1 ) = W( K+1, K+1 )
  881: *
  882: *              (2) Conjugate columns W(k) and W(k+1)
  883: *
  884:                CALL ZLACGV( N-K, W( K+1, K ), 1 )
  885:                CALL ZLACGV( N-K-1, W( K+2, K+1 ), 1 )
  886: *
  887:             END IF
  888: *
  889:          END IF
  890: *
  891: *        Store details of the interchanges in IPIV
  892: *
  893:          IF( KSTEP.EQ.1 ) THEN
  894:             IPIV( K ) = KP
  895:          ELSE
  896:             IPIV( K ) = -KP
  897:             IPIV( K+1 ) = -KP
  898:          END IF
  899: *
  900: *        Increase K and return to the start of the main loop
  901: *
  902:          K = K + KSTEP
  903:          GO TO 70
  904: *
  905:    90    CONTINUE
  906: *
  907: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
  908: *
  909: *        A22 := A22 - L21*D*L21**H = A22 - L21*W**H
  910: *
  911: *        computing blocks of NB columns at a time (note that conjg(W) is
  912: *        actually stored)
  913: *
  914:          DO 110 J = K, N, NB
  915:             JB = MIN( NB, N-J+1 )
  916: *
  917: *           Update the lower triangle of the diagonal block
  918: *
  919:             DO 100 JJ = J, J + JB - 1
  920:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  921:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
  922:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
  923:      $                     A( JJ, JJ ), 1 )
  924:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
  925:   100       CONTINUE
  926: *
  927: *           Update the rectangular subdiagonal block
  928: *
  929:             IF( J+JB.LE.N )
  930:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  931:      $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
  932:      $                     LDW, CONE, A( J+JB, J ), LDA )
  933:   110    CONTINUE
  934: *
  935: *        Put L21 in standard form by partially undoing the interchanges
  936: *        of rows in columns 1:k-1 looping backwards from k-1 to 1
  937: *
  938:          J = K - 1
  939:   120    CONTINUE
  940: *
  941: *           Undo the interchanges (if any) of rows JJ and JP at each
  942: *           step J
  943: *
  944: *           (Here, J is a diagonal index)
  945:             JJ = J
  946:             JP = IPIV( J )
  947:             IF( JP.LT.0 ) THEN
  948:                JP = -JP
  949: *              (Here, J is a diagonal index)
  950:                J = J - 1
  951:             END IF
  952: *           (NOTE: Here, J is used to determine row length. Length J
  953: *           of the rows to swap back doesn't include diagonal element)
  954:             J = J - 1
  955:             IF( JP.NE.JJ .AND. J.GE.1 )
  956:      $         CALL ZSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
  957:          IF( J.GT.1 )
  958:      $      GO TO 120
  959: *
  960: *        Set KB to the number of columns factorized
  961: *
  962:          KB = K - 1
  963: *
  964:       END IF
  965:       RETURN
  966: *
  967: *     End of ZLAHEF
  968: *
  969:       END

CVSweb interface <joel.bertrand@systella.fr>