Annotation of rpl/lapack/lapack/zlahef.f, revision 1.20

1.14      bertrand    1: *> \brief \b ZLAHEF computes a partial factorization of a complex Hermitian indefinite matrix using the Bunch-Kaufman diagonal pivoting method (blocked algorithm, calling Level 3 BLAS).
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download ZLAHEF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef.f">
1.9       bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLAHEF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
1.17      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, KB, LDA, LDW, N, NB
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       COMPLEX*16         A( LDA, * ), W( LDW, * )
                     30: *       ..
1.17      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZLAHEF computes a partial factorization of a complex Hermitian
                     39: *> matrix A using the Bunch-Kaufman diagonal pivoting method. The
                     40: *> partial factorization has the form:
                     41: *>
                     42: *> A  =  ( I  U12 ) ( A11  0  ) (  I      0     )  if UPLO = 'U', or:
                     43: *>       ( 0  U22 ) (  0   D  ) ( U12**H U22**H )
                     44: *>
                     45: *> A  =  ( L11  0 ) (  D   0  ) ( L11**H L21**H )  if UPLO = 'L'
                     46: *>       ( L21  I ) (  0  A22 ) (  0      I     )
                     47: *>
                     48: *> where the order of D is at most NB. The actual order is returned in
                     49: *> the argument KB, and is either NB or NB-1, or N if N <= NB.
                     50: *> Note that U**H denotes the conjugate transpose of U.
                     51: *>
                     52: *> ZLAHEF is an auxiliary routine called by ZHETRF. It uses blocked code
                     53: *> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
                     54: *> A22 (if UPLO = 'L').
                     55: *> \endverbatim
                     56: *
                     57: *  Arguments:
                     58: *  ==========
                     59: *
                     60: *> \param[in] UPLO
                     61: *> \verbatim
                     62: *>          UPLO is CHARACTER*1
                     63: *>          Specifies whether the upper or lower triangular part of the
                     64: *>          Hermitian matrix A is stored:
                     65: *>          = 'U':  Upper triangular
                     66: *>          = 'L':  Lower triangular
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] N
                     70: *> \verbatim
                     71: *>          N is INTEGER
                     72: *>          The order of the matrix A.  N >= 0.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] NB
                     76: *> \verbatim
                     77: *>          NB is INTEGER
                     78: *>          The maximum number of columns of the matrix A that should be
                     79: *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     80: *>          blocks.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[out] KB
                     84: *> \verbatim
                     85: *>          KB is INTEGER
                     86: *>          The number of columns of A that were actually factored.
                     87: *>          KB is either NB-1 or NB, or N if N <= NB.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in,out] A
                     91: *> \verbatim
                     92: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     93: *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     94: *>          n-by-n upper triangular part of A contains the upper
                     95: *>          triangular part of the matrix A, and the strictly lower
                     96: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     97: *>          leading n-by-n lower triangular part of A contains the lower
                     98: *>          triangular part of the matrix A, and the strictly upper
                     99: *>          triangular part of A is not referenced.
                    100: *>          On exit, A contains details of the partial factorization.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDA
                    104: *> \verbatim
                    105: *>          LDA is INTEGER
                    106: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[out] IPIV
                    110: *> \verbatim
                    111: *>          IPIV is INTEGER array, dimension (N)
                    112: *>          Details of the interchanges and the block structure of D.
                    113: *>
1.14      bertrand  114: *>          If UPLO = 'U':
                    115: *>             Only the last KB elements of IPIV are set.
                    116: *>
                    117: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                    118: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
                    119: *>
                    120: *>             If IPIV(k) = IPIV(k-1) < 0, then rows and columns
                    121: *>             k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                    122: *>             is a 2-by-2 diagonal block.
                    123: *>
                    124: *>          If UPLO = 'L':
                    125: *>             Only the first KB elements of IPIV are set.
                    126: *>
                    127: *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                    128: *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
                    129: *>
                    130: *>             If IPIV(k) = IPIV(k+1) < 0, then rows and columns
                    131: *>             k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
                    132: *>             is a 2-by-2 diagonal block.
1.9       bertrand  133: *> \endverbatim
                    134: *>
                    135: *> \param[out] W
                    136: *> \verbatim
                    137: *>          W is COMPLEX*16 array, dimension (LDW,NB)
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in] LDW
                    141: *> \verbatim
                    142: *>          LDW is INTEGER
                    143: *>          The leading dimension of the array W.  LDW >= max(1,N).
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[out] INFO
                    147: *> \verbatim
                    148: *>          INFO is INTEGER
                    149: *>          = 0: successful exit
                    150: *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
                    151: *>               has been completed, but the block diagonal matrix D is
                    152: *>               exactly singular.
                    153: *> \endverbatim
                    154: *
                    155: *  Authors:
                    156: *  ========
                    157: *
1.17      bertrand  158: *> \author Univ. of Tennessee
                    159: *> \author Univ. of California Berkeley
                    160: *> \author Univ. of Colorado Denver
                    161: *> \author NAG Ltd.
1.9       bertrand  162: *
                    163: *> \ingroup complex16HEcomputational
                    164: *
1.14      bertrand  165: *> \par Contributors:
                    166: *  ==================
                    167: *>
                    168: *> \verbatim
                    169: *>
1.17      bertrand  170: *>  December 2016,  Igor Kozachenko,
1.14      bertrand  171: *>                  Computer Science Division,
                    172: *>                  University of California, Berkeley
                    173: *> \endverbatim
                    174: *
1.9       bertrand  175: *  =====================================================================
1.1       bertrand  176:       SUBROUTINE ZLAHEF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
                    177: *
1.20    ! bertrand  178: *  -- LAPACK computational routine --
1.1       bertrand  179: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    180: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    181: *
                    182: *     .. Scalar Arguments ..
                    183:       CHARACTER          UPLO
                    184:       INTEGER            INFO, KB, LDA, LDW, N, NB
                    185: *     ..
                    186: *     .. Array Arguments ..
                    187:       INTEGER            IPIV( * )
                    188:       COMPLEX*16         A( LDA, * ), W( LDW, * )
                    189: *     ..
                    190: *
                    191: *  =====================================================================
                    192: *
                    193: *     .. Parameters ..
                    194:       DOUBLE PRECISION   ZERO, ONE
                    195:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    196:       COMPLEX*16         CONE
                    197:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    198:       DOUBLE PRECISION   EIGHT, SEVTEN
                    199:       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
                    200: *     ..
                    201: *     .. Local Scalars ..
                    202:       INTEGER            IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
                    203:      $                   KSTEP, KW
                    204:       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, R1, ROWMAX, T
                    205:       COMPLEX*16         D11, D21, D22, Z
                    206: *     ..
                    207: *     .. External Functions ..
                    208:       LOGICAL            LSAME
                    209:       INTEGER            IZAMAX
                    210:       EXTERNAL           LSAME, IZAMAX
                    211: *     ..
                    212: *     .. External Subroutines ..
                    213:       EXTERNAL           ZCOPY, ZDSCAL, ZGEMM, ZGEMV, ZLACGV, ZSWAP
                    214: *     ..
                    215: *     .. Intrinsic Functions ..
                    216:       INTRINSIC          ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
                    217: *     ..
                    218: *     .. Statement Functions ..
                    219:       DOUBLE PRECISION   CABS1
                    220: *     ..
                    221: *     .. Statement Function definitions ..
                    222:       CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
                    223: *     ..
                    224: *     .. Executable Statements ..
                    225: *
                    226:       INFO = 0
                    227: *
                    228: *     Initialize ALPHA for use in choosing pivot block size.
                    229: *
                    230:       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
                    231: *
                    232:       IF( LSAME( UPLO, 'U' ) ) THEN
                    233: *
                    234: *        Factorize the trailing columns of A using the upper triangle
                    235: *        of A and working backwards, and compute the matrix W = U12*D
                    236: *        for use in updating A11 (note that conjg(W) is actually stored)
                    237: *
                    238: *        K is the main loop index, decreasing from N in steps of 1 or 2
                    239: *
                    240: *        KW is the column of W which corresponds to column K of A
                    241: *
                    242:          K = N
                    243:    10    CONTINUE
                    244:          KW = NB + K - N
                    245: *
                    246: *        Exit from loop
                    247: *
                    248:          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
                    249:      $      GO TO 30
                    250: *
1.14      bertrand  251:          KSTEP = 1
                    252: *
1.1       bertrand  253: *        Copy column K of A to column KW of W and update it
                    254: *
                    255:          CALL ZCOPY( K-1, A( 1, K ), 1, W( 1, KW ), 1 )
                    256:          W( K, KW ) = DBLE( A( K, K ) )
                    257:          IF( K.LT.N ) THEN
                    258:             CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
                    259:      $                  W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
                    260:             W( K, KW ) = DBLE( W( K, KW ) )
                    261:          END IF
                    262: *
                    263: *        Determine rows and columns to be interchanged and whether
                    264: *        a 1-by-1 or 2-by-2 pivot block will be used
                    265: *
                    266:          ABSAKK = ABS( DBLE( W( K, KW ) ) )
                    267: *
                    268: *        IMAX is the row-index of the largest off-diagonal element in
1.14      bertrand  269: *        column K, and COLMAX is its absolute value.
                    270: *        Determine both COLMAX and IMAX.
1.1       bertrand  271: *
                    272:          IF( K.GT.1 ) THEN
                    273:             IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
                    274:             COLMAX = CABS1( W( IMAX, KW ) )
                    275:          ELSE
                    276:             COLMAX = ZERO
                    277:          END IF
                    278: *
                    279:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    280: *
1.14      bertrand  281: *           Column K is zero or underflow: set INFO and continue
1.1       bertrand  282: *
                    283:             IF( INFO.EQ.0 )
                    284:      $         INFO = K
                    285:             KP = K
                    286:             A( K, K ) = DBLE( A( K, K ) )
                    287:          ELSE
1.14      bertrand  288: *
                    289: *           ============================================================
                    290: *
                    291: *           BEGIN pivot search
                    292: *
                    293: *           Case(1)
1.1       bertrand  294:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    295: *
                    296: *              no interchange, use 1-by-1 pivot block
                    297: *
                    298:                KP = K
                    299:             ELSE
                    300: *
1.14      bertrand  301: *              BEGIN pivot search along IMAX row
                    302: *
                    303: *
1.1       bertrand  304: *              Copy column IMAX to column KW-1 of W and update it
                    305: *
                    306:                CALL ZCOPY( IMAX-1, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
                    307:                W( IMAX, KW-1 ) = DBLE( A( IMAX, IMAX ) )
                    308:                CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
                    309:      $                     W( IMAX+1, KW-1 ), 1 )
                    310:                CALL ZLACGV( K-IMAX, W( IMAX+1, KW-1 ), 1 )
                    311:                IF( K.LT.N ) THEN
                    312:                   CALL ZGEMV( 'No transpose', K, N-K, -CONE,
                    313:      $                        A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
                    314:      $                        CONE, W( 1, KW-1 ), 1 )
                    315:                   W( IMAX, KW-1 ) = DBLE( W( IMAX, KW-1 ) )
                    316:                END IF
                    317: *
                    318: *              JMAX is the column-index of the largest off-diagonal
1.14      bertrand  319: *              element in row IMAX, and ROWMAX is its absolute value.
                    320: *              Determine only ROWMAX.
1.1       bertrand  321: *
                    322:                JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
                    323:                ROWMAX = CABS1( W( JMAX, KW-1 ) )
                    324:                IF( IMAX.GT.1 ) THEN
                    325:                   JMAX = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
                    326:                   ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, KW-1 ) ) )
                    327:                END IF
                    328: *
1.14      bertrand  329: *              Case(2)
1.1       bertrand  330:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    331: *
                    332: *                 no interchange, use 1-by-1 pivot block
                    333: *
                    334:                   KP = K
1.14      bertrand  335: *
                    336: *              Case(3)
1.1       bertrand  337:                ELSE IF( ABS( DBLE( W( IMAX, KW-1 ) ) ).GE.ALPHA*ROWMAX )
                    338:      $                   THEN
                    339: *
                    340: *                 interchange rows and columns K and IMAX, use 1-by-1
                    341: *                 pivot block
                    342: *
                    343:                   KP = IMAX
                    344: *
1.14      bertrand  345: *                 copy column KW-1 of W to column KW of W
1.1       bertrand  346: *
                    347:                   CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
1.14      bertrand  348: *
                    349: *              Case(4)
1.1       bertrand  350:                ELSE
                    351: *
                    352: *                 interchange rows and columns K-1 and IMAX, use 2-by-2
                    353: *                 pivot block
                    354: *
                    355:                   KP = IMAX
                    356:                   KSTEP = 2
                    357:                END IF
1.14      bertrand  358: *
                    359: *
                    360: *              END pivot search along IMAX row
                    361: *
1.1       bertrand  362:             END IF
                    363: *
1.14      bertrand  364: *           END pivot search
                    365: *
                    366: *           ============================================================
                    367: *
                    368: *           KK is the column of A where pivoting step stopped
                    369: *
1.1       bertrand  370:             KK = K - KSTEP + 1
1.14      bertrand  371: *
                    372: *           KKW is the column of W which corresponds to column KK of A
                    373: *
1.1       bertrand  374:             KKW = NB + KK - N
                    375: *
1.14      bertrand  376: *           Interchange rows and columns KP and KK.
                    377: *           Updated column KP is already stored in column KKW of W.
1.1       bertrand  378: *
                    379:             IF( KP.NE.KK ) THEN
                    380: *
1.14      bertrand  381: *              Copy non-updated column KK to column KP of submatrix A
                    382: *              at step K. No need to copy element into column K
                    383: *              (or K and K-1 for 2-by-2 pivot) of A, since these columns
                    384: *              will be later overwritten.
1.1       bertrand  385: *
                    386:                A( KP, KP ) = DBLE( A( KK, KK ) )
                    387:                CALL ZCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
                    388:      $                     LDA )
                    389:                CALL ZLACGV( KK-1-KP, A( KP, KP+1 ), LDA )
1.14      bertrand  390:                IF( KP.GT.1 )
                    391:      $            CALL ZCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
1.1       bertrand  392: *
1.14      bertrand  393: *              Interchange rows KK and KP in last K+1 to N columns of A
                    394: *              (columns K (or K and K-1 for 2-by-2 pivot) of A will be
                    395: *              later overwritten). Interchange rows KK and KP
                    396: *              in last KKW to NB columns of W.
1.1       bertrand  397: *
1.14      bertrand  398:                IF( K.LT.N )
                    399:      $            CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
1.1       bertrand  400:      $                        LDA )
                    401:                CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
                    402:      $                     LDW )
                    403:             END IF
                    404: *
                    405:             IF( KSTEP.EQ.1 ) THEN
                    406: *
1.14      bertrand  407: *              1-by-1 pivot block D(k): column kw of W now holds
1.1       bertrand  408: *
1.14      bertrand  409: *              W(kw) = U(k)*D(k),
1.1       bertrand  410: *
                    411: *              where U(k) is the k-th column of U
                    412: *
1.14      bertrand  413: *              (1) Store subdiag. elements of column U(k)
                    414: *              and 1-by-1 block D(k) in column k of A.
                    415: *              (NOTE: Diagonal element U(k,k) is a UNIT element
                    416: *              and not stored)
                    417: *                 A(k,k) := D(k,k) = W(k,kw)
                    418: *                 A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
                    419: *
                    420: *              (NOTE: No need to use for Hermitian matrix
                    421: *              A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
                    422: *              element D(k,k) from W (potentially saves only one load))
                    423:                CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
                    424:                IF( K.GT.1 ) THEN
                    425: *
                    426: *                 (NOTE: No need to check if A(k,k) is NOT ZERO,
                    427: *                  since that was ensured earlier in pivot search:
                    428: *                  case A(k,k) = 0 falls into 2x2 pivot case(4))
1.1       bertrand  429: *
1.14      bertrand  430:                   R1 = ONE / DBLE( A( K, K ) )
                    431:                   CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
                    432: *
                    433: *                 (2) Conjugate column W(kw)
1.1       bertrand  434: *
1.14      bertrand  435:                   CALL ZLACGV( K-1, W( 1, KW ), 1 )
                    436:                END IF
1.1       bertrand  437: *
                    438:             ELSE
                    439: *
1.14      bertrand  440: *              2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
1.1       bertrand  441: *
1.14      bertrand  442: *              ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
1.1       bertrand  443: *
                    444: *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
                    445: *              of U
                    446: *
1.14      bertrand  447: *              (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
                    448: *              block D(k-1:k,k-1:k) in columns k-1 and k of A.
                    449: *              (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
                    450: *              block and not stored)
                    451: *                 A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
                    452: *                 A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
                    453: *                 = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
                    454: *
1.1       bertrand  455:                IF( K.GT.2 ) THEN
                    456: *
1.14      bertrand  457: *                 Factor out the columns of the inverse of 2-by-2 pivot
                    458: *                 block D, so that each column contains 1, to reduce the
                    459: *                 number of FLOPS when we multiply panel
                    460: *                 ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
                    461: *
                    462: *                 D**(-1) = ( d11 cj(d21) )**(-1) =
                    463: *                           ( d21    d22 )
                    464: *
                    465: *                 = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
                    466: *                                          ( (-d21) (     d11 ) )
                    467: *
                    468: *                 = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
                    469: *
                    470: *                   * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
                    471: *                     (     (      -1 )           ( d11/conj(d21) ) )
                    472: *
                    473: *                 = 1/(|d21|**2) * 1/(D22*D11-1) *
                    474: *
                    475: *                   * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
                    476: *                     (     (  -1 )           ( D22 ) )
                    477: *
                    478: *                 = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
                    479: *                                      (     (  -1 )           ( D22 ) )
                    480: *
                    481: *                 = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
                    482: *                   (               (  -1 )         ( D22 ) )
                    483: *
                    484: *                 = ( conj(D21)*( D11 ) D21*(  -1 ) )
                    485: *                   (           (  -1 )     ( D22 ) ),
                    486: *
                    487: *                 where D11 = d22/d21,
                    488: *                       D22 = d11/conj(d21),
                    489: *                       D21 = T/d21,
                    490: *                       T = 1/(D22*D11-1).
                    491: *
                    492: *                 (NOTE: No need to check for division by ZERO,
                    493: *                  since that was ensured earlier in pivot search:
                    494: *                  (a) d21 != 0, since in 2x2 pivot case(4)
                    495: *                      |d21| should be larger than |d11| and |d22|;
                    496: *                  (b) (D22*D11 - 1) != 0, since from (a),
                    497: *                      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
1.1       bertrand  498: *
                    499:                   D21 = W( K-1, KW )
                    500:                   D11 = W( K, KW ) / DCONJG( D21 )
                    501:                   D22 = W( K-1, KW-1 ) / D21
                    502:                   T = ONE / ( DBLE( D11*D22 )-ONE )
                    503:                   D21 = T / D21
1.14      bertrand  504: *
                    505: *                 Update elements in columns A(k-1) and A(k) as
                    506: *                 dot products of rows of ( W(kw-1) W(kw) ) and columns
                    507: *                 of D**(-1)
                    508: *
1.1       bertrand  509:                   DO 20 J = 1, K - 2
                    510:                      A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
                    511:                      A( J, K ) = DCONJG( D21 )*
                    512:      $                           ( D22*W( J, KW )-W( J, KW-1 ) )
                    513:    20             CONTINUE
                    514:                END IF
                    515: *
                    516: *              Copy D(k) to A
                    517: *
                    518:                A( K-1, K-1 ) = W( K-1, KW-1 )
                    519:                A( K-1, K ) = W( K-1, KW )
                    520:                A( K, K ) = W( K, KW )
                    521: *
1.14      bertrand  522: *              (2) Conjugate columns W(kw) and W(kw-1)
1.1       bertrand  523: *
                    524:                CALL ZLACGV( K-1, W( 1, KW ), 1 )
                    525:                CALL ZLACGV( K-2, W( 1, KW-1 ), 1 )
1.14      bertrand  526: *
1.1       bertrand  527:             END IF
1.14      bertrand  528: *
1.1       bertrand  529:          END IF
                    530: *
                    531: *        Store details of the interchanges in IPIV
                    532: *
                    533:          IF( KSTEP.EQ.1 ) THEN
                    534:             IPIV( K ) = KP
                    535:          ELSE
                    536:             IPIV( K ) = -KP
                    537:             IPIV( K-1 ) = -KP
                    538:          END IF
                    539: *
                    540: *        Decrease K and return to the start of the main loop
                    541: *
                    542:          K = K - KSTEP
                    543:          GO TO 10
                    544: *
                    545:    30    CONTINUE
                    546: *
                    547: *        Update the upper triangle of A11 (= A(1:k,1:k)) as
                    548: *
1.8       bertrand  549: *        A11 := A11 - U12*D*U12**H = A11 - U12*W**H
1.1       bertrand  550: *
                    551: *        computing blocks of NB columns at a time (note that conjg(W) is
                    552: *        actually stored)
                    553: *
                    554:          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
                    555:             JB = MIN( NB, K-J+1 )
                    556: *
                    557: *           Update the upper triangle of the diagonal block
                    558: *
                    559:             DO 40 JJ = J, J + JB - 1
                    560:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
                    561:                CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
                    562:      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
                    563:      $                     A( J, JJ ), 1 )
                    564:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
                    565:    40       CONTINUE
                    566: *
                    567: *           Update the rectangular superdiagonal block
                    568: *
                    569:             CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
                    570:      $                  -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
                    571:      $                  CONE, A( 1, J ), LDA )
                    572:    50    CONTINUE
                    573: *
                    574: *        Put U12 in standard form by partially undoing the interchanges
1.14      bertrand  575: *        in columns k+1:n looping backwards from k+1 to n
1.1       bertrand  576: *
                    577:          J = K + 1
                    578:    60    CONTINUE
1.14      bertrand  579: *
                    580: *           Undo the interchanges (if any) of rows JJ and JP at each
                    581: *           step J
                    582: *
                    583: *           (Here, J is a diagonal index)
                    584:             JJ = J
                    585:             JP = IPIV( J )
                    586:             IF( JP.LT.0 ) THEN
                    587:                JP = -JP
                    588: *              (Here, J is a diagonal index)
                    589:                J = J + 1
                    590:             END IF
                    591: *           (NOTE: Here, J is used to determine row length. Length N-J+1
                    592: *           of the rows to swap back doesn't include diagonal element)
1.1       bertrand  593:             J = J + 1
1.14      bertrand  594:             IF( JP.NE.JJ .AND. J.LE.N )
                    595:      $         CALL ZSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
                    596:          IF( J.LT.N )
1.1       bertrand  597:      $      GO TO 60
                    598: *
                    599: *        Set KB to the number of columns factorized
                    600: *
                    601:          KB = N - K
                    602: *
                    603:       ELSE
                    604: *
                    605: *        Factorize the leading columns of A using the lower triangle
                    606: *        of A and working forwards, and compute the matrix W = L21*D
                    607: *        for use in updating A22 (note that conjg(W) is actually stored)
                    608: *
                    609: *        K is the main loop index, increasing from 1 in steps of 1 or 2
                    610: *
                    611:          K = 1
                    612:    70    CONTINUE
                    613: *
                    614: *        Exit from loop
                    615: *
                    616:          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
                    617:      $      GO TO 90
                    618: *
1.14      bertrand  619:          KSTEP = 1
                    620: *
1.1       bertrand  621: *        Copy column K of A to column K of W and update it
                    622: *
                    623:          W( K, K ) = DBLE( A( K, K ) )
                    624:          IF( K.LT.N )
                    625:      $      CALL ZCOPY( N-K, A( K+1, K ), 1, W( K+1, K ), 1 )
                    626:          CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ), LDA,
                    627:      $               W( K, 1 ), LDW, CONE, W( K, K ), 1 )
                    628:          W( K, K ) = DBLE( W( K, K ) )
                    629: *
                    630: *        Determine rows and columns to be interchanged and whether
                    631: *        a 1-by-1 or 2-by-2 pivot block will be used
                    632: *
                    633:          ABSAKK = ABS( DBLE( W( K, K ) ) )
                    634: *
                    635: *        IMAX is the row-index of the largest off-diagonal element in
1.14      bertrand  636: *        column K, and COLMAX is its absolute value.
                    637: *        Determine both COLMAX and IMAX.
1.1       bertrand  638: *
                    639:          IF( K.LT.N ) THEN
                    640:             IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
                    641:             COLMAX = CABS1( W( IMAX, K ) )
                    642:          ELSE
                    643:             COLMAX = ZERO
                    644:          END IF
                    645: *
                    646:          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
                    647: *
1.14      bertrand  648: *           Column K is zero or underflow: set INFO and continue
1.1       bertrand  649: *
                    650:             IF( INFO.EQ.0 )
                    651:      $         INFO = K
                    652:             KP = K
                    653:             A( K, K ) = DBLE( A( K, K ) )
                    654:          ELSE
1.14      bertrand  655: *
                    656: *           ============================================================
                    657: *
                    658: *           BEGIN pivot search
                    659: *
                    660: *           Case(1)
1.1       bertrand  661:             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
                    662: *
                    663: *              no interchange, use 1-by-1 pivot block
                    664: *
                    665:                KP = K
                    666:             ELSE
                    667: *
1.14      bertrand  668: *              BEGIN pivot search along IMAX row
                    669: *
                    670: *
1.1       bertrand  671: *              Copy column IMAX to column K+1 of W and update it
                    672: *
                    673:                CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
                    674:                CALL ZLACGV( IMAX-K, W( K, K+1 ), 1 )
                    675:                W( IMAX, K+1 ) = DBLE( A( IMAX, IMAX ) )
                    676:                IF( IMAX.LT.N )
                    677:      $            CALL ZCOPY( N-IMAX, A( IMAX+1, IMAX ), 1,
                    678:      $                        W( IMAX+1, K+1 ), 1 )
                    679:                CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
                    680:      $                     LDA, W( IMAX, 1 ), LDW, CONE, W( K, K+1 ),
                    681:      $                     1 )
                    682:                W( IMAX, K+1 ) = DBLE( W( IMAX, K+1 ) )
                    683: *
                    684: *              JMAX is the column-index of the largest off-diagonal
1.14      bertrand  685: *              element in row IMAX, and ROWMAX is its absolute value.
                    686: *              Determine only ROWMAX.
1.1       bertrand  687: *
                    688:                JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
                    689:                ROWMAX = CABS1( W( JMAX, K+1 ) )
                    690:                IF( IMAX.LT.N ) THEN
                    691:                   JMAX = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
                    692:                   ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, K+1 ) ) )
                    693:                END IF
                    694: *
1.14      bertrand  695: *              Case(2)
1.1       bertrand  696:                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
                    697: *
                    698: *                 no interchange, use 1-by-1 pivot block
                    699: *
                    700:                   KP = K
1.14      bertrand  701: *
                    702: *              Case(3)
1.1       bertrand  703:                ELSE IF( ABS( DBLE( W( IMAX, K+1 ) ) ).GE.ALPHA*ROWMAX )
                    704:      $                   THEN
                    705: *
                    706: *                 interchange rows and columns K and IMAX, use 1-by-1
                    707: *                 pivot block
                    708: *
                    709:                   KP = IMAX
                    710: *
1.14      bertrand  711: *                 copy column K+1 of W to column K of W
1.1       bertrand  712: *
                    713:                   CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
1.14      bertrand  714: *
                    715: *              Case(4)
1.1       bertrand  716:                ELSE
                    717: *
                    718: *                 interchange rows and columns K+1 and IMAX, use 2-by-2
                    719: *                 pivot block
                    720: *
                    721:                   KP = IMAX
                    722:                   KSTEP = 2
                    723:                END IF
1.14      bertrand  724: *
                    725: *
                    726: *              END pivot search along IMAX row
                    727: *
1.1       bertrand  728:             END IF
                    729: *
1.14      bertrand  730: *           END pivot search
                    731: *
                    732: *           ============================================================
                    733: *
                    734: *           KK is the column of A where pivoting step stopped
                    735: *
1.1       bertrand  736:             KK = K + KSTEP - 1
                    737: *
1.14      bertrand  738: *           Interchange rows and columns KP and KK.
                    739: *           Updated column KP is already stored in column KK of W.
1.1       bertrand  740: *
                    741:             IF( KP.NE.KK ) THEN
                    742: *
1.14      bertrand  743: *              Copy non-updated column KK to column KP of submatrix A
                    744: *              at step K. No need to copy element into column K
                    745: *              (or K and K+1 for 2-by-2 pivot) of A, since these columns
                    746: *              will be later overwritten.
1.1       bertrand  747: *
                    748:                A( KP, KP ) = DBLE( A( KK, KK ) )
                    749:                CALL ZCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
                    750:      $                     LDA )
                    751:                CALL ZLACGV( KP-KK-1, A( KP, KK+1 ), LDA )
                    752:                IF( KP.LT.N )
                    753:      $            CALL ZCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
                    754: *
1.14      bertrand  755: *              Interchange rows KK and KP in first K-1 columns of A
                    756: *              (columns K (or K and K+1 for 2-by-2 pivot) of A will be
                    757: *              later overwritten). Interchange rows KK and KP
                    758: *              in first KK columns of W.
1.1       bertrand  759: *
1.14      bertrand  760:                IF( K.GT.1 )
                    761:      $            CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
1.1       bertrand  762:                CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
                    763:             END IF
                    764: *
                    765:             IF( KSTEP.EQ.1 ) THEN
                    766: *
                    767: *              1-by-1 pivot block D(k): column k of W now holds
                    768: *
1.14      bertrand  769: *              W(k) = L(k)*D(k),
1.1       bertrand  770: *
                    771: *              where L(k) is the k-th column of L
                    772: *
1.14      bertrand  773: *              (1) Store subdiag. elements of column L(k)
                    774: *              and 1-by-1 block D(k) in column k of A.
                    775: *              (NOTE: Diagonal element L(k,k) is a UNIT element
                    776: *              and not stored)
                    777: *                 A(k,k) := D(k,k) = W(k,k)
                    778: *                 A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
                    779: *
                    780: *              (NOTE: No need to use for Hermitian matrix
                    781: *              A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
                    782: *              element D(k,k) from W (potentially saves only one load))
1.1       bertrand  783:                CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
                    784:                IF( K.LT.N ) THEN
1.14      bertrand  785: *
                    786: *                 (NOTE: No need to check if A(k,k) is NOT ZERO,
                    787: *                  since that was ensured earlier in pivot search:
                    788: *                  case A(k,k) = 0 falls into 2x2 pivot case(4))
                    789: *
1.1       bertrand  790:                   R1 = ONE / DBLE( A( K, K ) )
                    791:                   CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
                    792: *
1.14      bertrand  793: *                 (2) Conjugate column W(k)
1.1       bertrand  794: *
                    795:                   CALL ZLACGV( N-K, W( K+1, K ), 1 )
                    796:                END IF
1.14      bertrand  797: *
1.1       bertrand  798:             ELSE
                    799: *
                    800: *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
                    801: *
                    802: *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
                    803: *
                    804: *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
                    805: *              of L
                    806: *
1.14      bertrand  807: *              (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
                    808: *              block D(k:k+1,k:k+1) in columns k and k+1 of A.
                    809: *              (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
                    810: *              block and not stored)
                    811: *                 A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
                    812: *                 A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
                    813: *                 = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
                    814: *
1.1       bertrand  815:                IF( K.LT.N-1 ) THEN
                    816: *
1.14      bertrand  817: *                 Factor out the columns of the inverse of 2-by-2 pivot
                    818: *                 block D, so that each column contains 1, to reduce the
                    819: *                 number of FLOPS when we multiply panel
                    820: *                 ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
                    821: *
                    822: *                 D**(-1) = ( d11 cj(d21) )**(-1) =
                    823: *                           ( d21    d22 )
                    824: *
                    825: *                 = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
                    826: *                                          ( (-d21) (     d11 ) )
                    827: *
                    828: *                 = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
                    829: *
                    830: *                   * ( d21*( d22/d21 ) conj(d21)*(           - 1 ) ) =
                    831: *                     (     (      -1 )           ( d11/conj(d21) ) )
                    832: *
                    833: *                 = 1/(|d21|**2) * 1/(D22*D11-1) *
                    834: *
                    835: *                   * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
                    836: *                     (     (  -1 )           ( D22 ) )
                    837: *
                    838: *                 = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*(  -1 ) ) =
                    839: *                                      (     (  -1 )           ( D22 ) )
                    840: *
                    841: *                 = ( (T/conj(d21))*( D11 ) (T/d21)*(  -1 ) ) =
                    842: *                   (               (  -1 )         ( D22 ) )
                    843: *
                    844: *                 = ( conj(D21)*( D11 ) D21*(  -1 ) )
                    845: *                   (           (  -1 )     ( D22 ) ),
                    846: *
                    847: *                 where D11 = d22/d21,
                    848: *                       D22 = d11/conj(d21),
                    849: *                       D21 = T/d21,
                    850: *                       T = 1/(D22*D11-1).
                    851: *
                    852: *                 (NOTE: No need to check for division by ZERO,
                    853: *                  since that was ensured earlier in pivot search:
                    854: *                  (a) d21 != 0, since in 2x2 pivot case(4)
                    855: *                      |d21| should be larger than |d11| and |d22|;
                    856: *                  (b) (D22*D11 - 1) != 0, since from (a),
                    857: *                      both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
1.1       bertrand  858: *
                    859:                   D21 = W( K+1, K )
                    860:                   D11 = W( K+1, K+1 ) / D21
                    861:                   D22 = W( K, K ) / DCONJG( D21 )
                    862:                   T = ONE / ( DBLE( D11*D22 )-ONE )
                    863:                   D21 = T / D21
1.14      bertrand  864: *
                    865: *                 Update elements in columns A(k) and A(k+1) as
                    866: *                 dot products of rows of ( W(k) W(k+1) ) and columns
                    867: *                 of D**(-1)
                    868: *
1.1       bertrand  869:                   DO 80 J = K + 2, N
                    870:                      A( J, K ) = DCONJG( D21 )*
                    871:      $                           ( D11*W( J, K )-W( J, K+1 ) )
                    872:                      A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
                    873:    80             CONTINUE
                    874:                END IF
                    875: *
                    876: *              Copy D(k) to A
                    877: *
                    878:                A( K, K ) = W( K, K )
                    879:                A( K+1, K ) = W( K+1, K )
                    880:                A( K+1, K+1 ) = W( K+1, K+1 )
                    881: *
1.14      bertrand  882: *              (2) Conjugate columns W(k) and W(k+1)
1.1       bertrand  883: *
                    884:                CALL ZLACGV( N-K, W( K+1, K ), 1 )
                    885:                CALL ZLACGV( N-K-1, W( K+2, K+1 ), 1 )
1.14      bertrand  886: *
1.1       bertrand  887:             END IF
1.14      bertrand  888: *
1.1       bertrand  889:          END IF
                    890: *
                    891: *        Store details of the interchanges in IPIV
                    892: *
                    893:          IF( KSTEP.EQ.1 ) THEN
                    894:             IPIV( K ) = KP
                    895:          ELSE
                    896:             IPIV( K ) = -KP
                    897:             IPIV( K+1 ) = -KP
                    898:          END IF
                    899: *
                    900: *        Increase K and return to the start of the main loop
                    901: *
                    902:          K = K + KSTEP
                    903:          GO TO 70
                    904: *
                    905:    90    CONTINUE
                    906: *
                    907: *        Update the lower triangle of A22 (= A(k:n,k:n)) as
                    908: *
1.8       bertrand  909: *        A22 := A22 - L21*D*L21**H = A22 - L21*W**H
1.1       bertrand  910: *
                    911: *        computing blocks of NB columns at a time (note that conjg(W) is
                    912: *        actually stored)
                    913: *
                    914:          DO 110 J = K, N, NB
                    915:             JB = MIN( NB, N-J+1 )
                    916: *
                    917: *           Update the lower triangle of the diagonal block
                    918: *
                    919:             DO 100 JJ = J, J + JB - 1
                    920:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
                    921:                CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
                    922:      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
                    923:      $                     A( JJ, JJ ), 1 )
                    924:                A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
                    925:   100       CONTINUE
                    926: *
                    927: *           Update the rectangular subdiagonal block
                    928: *
                    929:             IF( J+JB.LE.N )
                    930:      $         CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
                    931:      $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
                    932:      $                     LDW, CONE, A( J+JB, J ), LDA )
                    933:   110    CONTINUE
                    934: *
                    935: *        Put L21 in standard form by partially undoing the interchanges
1.14      bertrand  936: *        of rows in columns 1:k-1 looping backwards from k-1 to 1
1.1       bertrand  937: *
                    938:          J = K - 1
                    939:   120    CONTINUE
1.14      bertrand  940: *
                    941: *           Undo the interchanges (if any) of rows JJ and JP at each
                    942: *           step J
                    943: *
                    944: *           (Here, J is a diagonal index)
                    945:             JJ = J
                    946:             JP = IPIV( J )
                    947:             IF( JP.LT.0 ) THEN
                    948:                JP = -JP
                    949: *              (Here, J is a diagonal index)
                    950:                J = J - 1
                    951:             END IF
                    952: *           (NOTE: Here, J is used to determine row length. Length J
                    953: *           of the rows to swap back doesn't include diagonal element)
1.1       bertrand  954:             J = J - 1
1.14      bertrand  955:             IF( JP.NE.JJ .AND. J.GE.1 )
                    956:      $         CALL ZSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
                    957:          IF( J.GT.1 )
1.1       bertrand  958:      $      GO TO 120
                    959: *
                    960: *        Set KB to the number of columns factorized
                    961: *
                    962:          KB = K - 1
                    963: *
                    964:       END IF
                    965:       RETURN
                    966: *
                    967: *     End of ZLAHEF
                    968: *
                    969:       END

CVSweb interface <joel.bertrand@systella.fr>