File:  [local] / rpl / lapack / lapack / zlaed0.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:28 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLAED0 used by ZSTEDC. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLAED0 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaed0.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaed0.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaed0.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
   22: *                          IWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDQ, LDQS, N, QSIZ
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IWORK( * )
   29: *       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
   30: *       COMPLEX*16         Q( LDQ, * ), QSTORE( LDQS, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> Using the divide and conquer method, ZLAED0 computes all eigenvalues
   40: *> of a symmetric tridiagonal matrix which is one diagonal block of
   41: *> those from reducing a dense or band Hermitian matrix and
   42: *> corresponding eigenvectors of the dense or band matrix.
   43: *> \endverbatim
   44: *
   45: *  Arguments:
   46: *  ==========
   47: *
   48: *> \param[in] QSIZ
   49: *> \verbatim
   50: *>          QSIZ is INTEGER
   51: *>         The dimension of the unitary matrix used to reduce
   52: *>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in,out] D
   62: *> \verbatim
   63: *>          D is DOUBLE PRECISION array, dimension (N)
   64: *>         On entry, the diagonal elements of the tridiagonal matrix.
   65: *>         On exit, the eigenvalues in ascending order.
   66: *> \endverbatim
   67: *>
   68: *> \param[in,out] E
   69: *> \verbatim
   70: *>          E is DOUBLE PRECISION array, dimension (N-1)
   71: *>         On entry, the off-diagonal elements of the tridiagonal matrix.
   72: *>         On exit, E has been destroyed.
   73: *> \endverbatim
   74: *>
   75: *> \param[in,out] Q
   76: *> \verbatim
   77: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
   78: *>         On entry, Q must contain an QSIZ x N matrix whose columns
   79: *>         unitarily orthonormal. It is a part of the unitary matrix
   80: *>         that reduces the full dense Hermitian matrix to a
   81: *>         (reducible) symmetric tridiagonal matrix.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] LDQ
   85: *> \verbatim
   86: *>          LDQ is INTEGER
   87: *>         The leading dimension of the array Q.  LDQ >= max(1,N).
   88: *> \endverbatim
   89: *>
   90: *> \param[out] IWORK
   91: *> \verbatim
   92: *>          IWORK is INTEGER array,
   93: *>         the dimension of IWORK must be at least
   94: *>                      6 + 6*N + 5*N*lg N
   95: *>                      ( lg( N ) = smallest integer k
   96: *>                                  such that 2^k >= N )
   97: *> \endverbatim
   98: *>
   99: *> \param[out] RWORK
  100: *> \verbatim
  101: *>          RWORK is DOUBLE PRECISION array,
  102: *>                               dimension (1 + 3*N + 2*N*lg N + 3*N**2)
  103: *>                        ( lg( N ) = smallest integer k
  104: *>                                    such that 2^k >= N )
  105: *> \endverbatim
  106: *>
  107: *> \param[out] QSTORE
  108: *> \verbatim
  109: *>          QSTORE is COMPLEX*16 array, dimension (LDQS, N)
  110: *>         Used to store parts of
  111: *>         the eigenvector matrix when the updating matrix multiplies
  112: *>         take place.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDQS
  116: *> \verbatim
  117: *>          LDQS is INTEGER
  118: *>         The leading dimension of the array QSTORE.
  119: *>         LDQS >= max(1,N).
  120: *> \endverbatim
  121: *>
  122: *> \param[out] INFO
  123: *> \verbatim
  124: *>          INFO is INTEGER
  125: *>          = 0:  successful exit.
  126: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  127: *>          > 0:  The algorithm failed to compute an eigenvalue while
  128: *>                working on the submatrix lying in rows and columns
  129: *>                INFO/(N+1) through mod(INFO,N+1).
  130: *> \endverbatim
  131: *
  132: *  Authors:
  133: *  ========
  134: *
  135: *> \author Univ. of Tennessee
  136: *> \author Univ. of California Berkeley
  137: *> \author Univ. of Colorado Denver
  138: *> \author NAG Ltd.
  139: *
  140: *> \ingroup complex16OTHERcomputational
  141: *
  142: *  =====================================================================
  143:       SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
  144:      $                   IWORK, INFO )
  145: *
  146: *  -- LAPACK computational routine --
  147: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  148: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  149: *
  150: *     .. Scalar Arguments ..
  151:       INTEGER            INFO, LDQ, LDQS, N, QSIZ
  152: *     ..
  153: *     .. Array Arguments ..
  154:       INTEGER            IWORK( * )
  155:       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
  156:       COMPLEX*16         Q( LDQ, * ), QSTORE( LDQS, * )
  157: *     ..
  158: *
  159: *  =====================================================================
  160: *
  161: *  Warning:      N could be as big as QSIZ!
  162: *
  163: *     .. Parameters ..
  164:       DOUBLE PRECISION   TWO
  165:       PARAMETER          ( TWO = 2.D+0 )
  166: *     ..
  167: *     .. Local Scalars ..
  168:       INTEGER            CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
  169:      $                   IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
  170:      $                   J, K, LGN, LL, MATSIZ, MSD2, SMLSIZ, SMM1,
  171:      $                   SPM1, SPM2, SUBMAT, SUBPBS, TLVLS
  172:       DOUBLE PRECISION   TEMP
  173: *     ..
  174: *     .. External Subroutines ..
  175:       EXTERNAL           DCOPY, DSTEQR, XERBLA, ZCOPY, ZLACRM, ZLAED7
  176: *     ..
  177: *     .. External Functions ..
  178:       INTEGER            ILAENV
  179:       EXTERNAL           ILAENV
  180: *     ..
  181: *     .. Intrinsic Functions ..
  182:       INTRINSIC          ABS, DBLE, INT, LOG, MAX
  183: *     ..
  184: *     .. Executable Statements ..
  185: *
  186: *     Test the input parameters.
  187: *
  188:       INFO = 0
  189: *
  190: *     IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN
  191: *        INFO = -1
  192: *     ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )
  193: *    $        THEN
  194:       IF( QSIZ.LT.MAX( 0, N ) ) THEN
  195:          INFO = -1
  196:       ELSE IF( N.LT.0 ) THEN
  197:          INFO = -2
  198:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  199:          INFO = -6
  200:       ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
  201:          INFO = -8
  202:       END IF
  203:       IF( INFO.NE.0 ) THEN
  204:          CALL XERBLA( 'ZLAED0', -INFO )
  205:          RETURN
  206:       END IF
  207: *
  208: *     Quick return if possible
  209: *
  210:       IF( N.EQ.0 )
  211:      $   RETURN
  212: *
  213:       SMLSIZ = ILAENV( 9, 'ZLAED0', ' ', 0, 0, 0, 0 )
  214: *
  215: *     Determine the size and placement of the submatrices, and save in
  216: *     the leading elements of IWORK.
  217: *
  218:       IWORK( 1 ) = N
  219:       SUBPBS = 1
  220:       TLVLS = 0
  221:    10 CONTINUE
  222:       IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
  223:          DO 20 J = SUBPBS, 1, -1
  224:             IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
  225:             IWORK( 2*J-1 ) = IWORK( J ) / 2
  226:    20    CONTINUE
  227:          TLVLS = TLVLS + 1
  228:          SUBPBS = 2*SUBPBS
  229:          GO TO 10
  230:       END IF
  231:       DO 30 J = 2, SUBPBS
  232:          IWORK( J ) = IWORK( J ) + IWORK( J-1 )
  233:    30 CONTINUE
  234: *
  235: *     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
  236: *     using rank-1 modifications (cuts).
  237: *
  238:       SPM1 = SUBPBS - 1
  239:       DO 40 I = 1, SPM1
  240:          SUBMAT = IWORK( I ) + 1
  241:          SMM1 = SUBMAT - 1
  242:          D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
  243:          D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
  244:    40 CONTINUE
  245: *
  246:       INDXQ = 4*N + 3
  247: *
  248: *     Set up workspaces for eigenvalues only/accumulate new vectors
  249: *     routine
  250: *
  251:       TEMP = LOG( DBLE( N ) ) / LOG( TWO )
  252:       LGN = INT( TEMP )
  253:       IF( 2**LGN.LT.N )
  254:      $   LGN = LGN + 1
  255:       IF( 2**LGN.LT.N )
  256:      $   LGN = LGN + 1
  257:       IPRMPT = INDXQ + N + 1
  258:       IPERM = IPRMPT + N*LGN
  259:       IQPTR = IPERM + N*LGN
  260:       IGIVPT = IQPTR + N + 2
  261:       IGIVCL = IGIVPT + N*LGN
  262: *
  263:       IGIVNM = 1
  264:       IQ = IGIVNM + 2*N*LGN
  265:       IWREM = IQ + N**2 + 1
  266: *     Initialize pointers
  267:       DO 50 I = 0, SUBPBS
  268:          IWORK( IPRMPT+I ) = 1
  269:          IWORK( IGIVPT+I ) = 1
  270:    50 CONTINUE
  271:       IWORK( IQPTR ) = 1
  272: *
  273: *     Solve each submatrix eigenproblem at the bottom of the divide and
  274: *     conquer tree.
  275: *
  276:       CURR = 0
  277:       DO 70 I = 0, SPM1
  278:          IF( I.EQ.0 ) THEN
  279:             SUBMAT = 1
  280:             MATSIZ = IWORK( 1 )
  281:          ELSE
  282:             SUBMAT = IWORK( I ) + 1
  283:             MATSIZ = IWORK( I+1 ) - IWORK( I )
  284:          END IF
  285:          LL = IQ - 1 + IWORK( IQPTR+CURR )
  286:          CALL DSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
  287:      $                RWORK( LL ), MATSIZ, RWORK, INFO )
  288:          CALL ZLACRM( QSIZ, MATSIZ, Q( 1, SUBMAT ), LDQ, RWORK( LL ),
  289:      $                MATSIZ, QSTORE( 1, SUBMAT ), LDQS,
  290:      $                RWORK( IWREM ) )
  291:          IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
  292:          CURR = CURR + 1
  293:          IF( INFO.GT.0 ) THEN
  294:             INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
  295:             RETURN
  296:          END IF
  297:          K = 1
  298:          DO 60 J = SUBMAT, IWORK( I+1 )
  299:             IWORK( INDXQ+J ) = K
  300:             K = K + 1
  301:    60    CONTINUE
  302:    70 CONTINUE
  303: *
  304: *     Successively merge eigensystems of adjacent submatrices
  305: *     into eigensystem for the corresponding larger matrix.
  306: *
  307: *     while ( SUBPBS > 1 )
  308: *
  309:       CURLVL = 1
  310:    80 CONTINUE
  311:       IF( SUBPBS.GT.1 ) THEN
  312:          SPM2 = SUBPBS - 2
  313:          DO 90 I = 0, SPM2, 2
  314:             IF( I.EQ.0 ) THEN
  315:                SUBMAT = 1
  316:                MATSIZ = IWORK( 2 )
  317:                MSD2 = IWORK( 1 )
  318:                CURPRB = 0
  319:             ELSE
  320:                SUBMAT = IWORK( I ) + 1
  321:                MATSIZ = IWORK( I+2 ) - IWORK( I )
  322:                MSD2 = MATSIZ / 2
  323:                CURPRB = CURPRB + 1
  324:             END IF
  325: *
  326: *     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
  327: *     into an eigensystem of size MATSIZ.  ZLAED7 handles the case
  328: *     when the eigenvectors of a full or band Hermitian matrix (which
  329: *     was reduced to tridiagonal form) are desired.
  330: *
  331: *     I am free to use Q as a valuable working space until Loop 150.
  332: *
  333:             CALL ZLAED7( MATSIZ, MSD2, QSIZ, TLVLS, CURLVL, CURPRB,
  334:      $                   D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
  335:      $                   E( SUBMAT+MSD2-1 ), IWORK( INDXQ+SUBMAT ),
  336:      $                   RWORK( IQ ), IWORK( IQPTR ), IWORK( IPRMPT ),
  337:      $                   IWORK( IPERM ), IWORK( IGIVPT ),
  338:      $                   IWORK( IGIVCL ), RWORK( IGIVNM ),
  339:      $                   Q( 1, SUBMAT ), RWORK( IWREM ),
  340:      $                   IWORK( SUBPBS+1 ), INFO )
  341:             IF( INFO.GT.0 ) THEN
  342:                INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
  343:                RETURN
  344:             END IF
  345:             IWORK( I / 2+1 ) = IWORK( I+2 )
  346:    90    CONTINUE
  347:          SUBPBS = SUBPBS / 2
  348:          CURLVL = CURLVL + 1
  349:          GO TO 80
  350:       END IF
  351: *
  352: *     end while
  353: *
  354: *     Re-merge the eigenvalues/vectors which were deflated at the final
  355: *     merge step.
  356: *
  357:       DO 100 I = 1, N
  358:          J = IWORK( INDXQ+I )
  359:          RWORK( I ) = D( J )
  360:          CALL ZCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
  361:   100 CONTINUE
  362:       CALL DCOPY( N, RWORK, 1, D, 1 )
  363: *
  364:       RETURN
  365: *
  366: *     End of ZLAED0
  367: *
  368:       END

CVSweb interface <joel.bertrand@systella.fr>