Annotation of rpl/lapack/lapack/zlaed0.f, revision 1.18

1.18    ! bertrand    1: *> \brief \b ZLAED0 used by ZSTEDC. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZLAED0 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaed0.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaed0.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaed0.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
                     22: *                          IWORK, INFO )
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDQ, LDQS, N, QSIZ
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IWORK( * )
                     29: *       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
                     30: *       COMPLEX*16         Q( LDQ, * ), QSTORE( LDQS, * )
                     31: *       ..
1.15      bertrand   32: *
1.8       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> Using the divide and conquer method, ZLAED0 computes all eigenvalues
                     40: *> of a symmetric tridiagonal matrix which is one diagonal block of
                     41: *> those from reducing a dense or band Hermitian matrix and
                     42: *> corresponding eigenvectors of the dense or band matrix.
                     43: *> \endverbatim
                     44: *
                     45: *  Arguments:
                     46: *  ==========
                     47: *
                     48: *> \param[in] QSIZ
                     49: *> \verbatim
                     50: *>          QSIZ is INTEGER
                     51: *>         The dimension of the unitary matrix used to reduce
                     52: *>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] N
                     56: *> \verbatim
                     57: *>          N is INTEGER
                     58: *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in,out] D
                     62: *> \verbatim
                     63: *>          D is DOUBLE PRECISION array, dimension (N)
                     64: *>         On entry, the diagonal elements of the tridiagonal matrix.
                     65: *>         On exit, the eigenvalues in ascending order.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in,out] E
                     69: *> \verbatim
                     70: *>          E is DOUBLE PRECISION array, dimension (N-1)
                     71: *>         On entry, the off-diagonal elements of the tridiagonal matrix.
                     72: *>         On exit, E has been destroyed.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in,out] Q
                     76: *> \verbatim
                     77: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
                     78: *>         On entry, Q must contain an QSIZ x N matrix whose columns
                     79: *>         unitarily orthonormal. It is a part of the unitary matrix
                     80: *>         that reduces the full dense Hermitian matrix to a
                     81: *>         (reducible) symmetric tridiagonal matrix.
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] LDQ
                     85: *> \verbatim
                     86: *>          LDQ is INTEGER
                     87: *>         The leading dimension of the array Q.  LDQ >= max(1,N).
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[out] IWORK
                     91: *> \verbatim
                     92: *>          IWORK is INTEGER array,
                     93: *>         the dimension of IWORK must be at least
                     94: *>                      6 + 6*N + 5*N*lg N
                     95: *>                      ( lg( N ) = smallest integer k
                     96: *>                                  such that 2^k >= N )
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[out] RWORK
                    100: *> \verbatim
                    101: *>          RWORK is DOUBLE PRECISION array,
                    102: *>                               dimension (1 + 3*N + 2*N*lg N + 3*N**2)
                    103: *>                        ( lg( N ) = smallest integer k
                    104: *>                                    such that 2^k >= N )
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[out] QSTORE
                    108: *> \verbatim
                    109: *>          QSTORE is COMPLEX*16 array, dimension (LDQS, N)
                    110: *>         Used to store parts of
                    111: *>         the eigenvector matrix when the updating matrix multiplies
                    112: *>         take place.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] LDQS
                    116: *> \verbatim
                    117: *>          LDQS is INTEGER
                    118: *>         The leading dimension of the array QSTORE.
                    119: *>         LDQS >= max(1,N).
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[out] INFO
                    123: *> \verbatim
                    124: *>          INFO is INTEGER
                    125: *>          = 0:  successful exit.
                    126: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    127: *>          > 0:  The algorithm failed to compute an eigenvalue while
                    128: *>                working on the submatrix lying in rows and columns
                    129: *>                INFO/(N+1) through mod(INFO,N+1).
                    130: *> \endverbatim
                    131: *
                    132: *  Authors:
                    133: *  ========
                    134: *
1.15      bertrand  135: *> \author Univ. of Tennessee
                    136: *> \author Univ. of California Berkeley
                    137: *> \author Univ. of Colorado Denver
                    138: *> \author NAG Ltd.
1.8       bertrand  139: *
                    140: *> \ingroup complex16OTHERcomputational
                    141: *
                    142: *  =====================================================================
1.1       bertrand  143:       SUBROUTINE ZLAED0( QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK,
                    144:      $                   IWORK, INFO )
                    145: *
1.18    ! bertrand  146: *  -- LAPACK computational routine --
1.1       bertrand  147: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    148: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    149: *
                    150: *     .. Scalar Arguments ..
                    151:       INTEGER            INFO, LDQ, LDQS, N, QSIZ
                    152: *     ..
                    153: *     .. Array Arguments ..
                    154:       INTEGER            IWORK( * )
                    155:       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
                    156:       COMPLEX*16         Q( LDQ, * ), QSTORE( LDQS, * )
                    157: *     ..
                    158: *
                    159: *  =====================================================================
                    160: *
                    161: *  Warning:      N could be as big as QSIZ!
                    162: *
                    163: *     .. Parameters ..
                    164:       DOUBLE PRECISION   TWO
                    165:       PARAMETER          ( TWO = 2.D+0 )
                    166: *     ..
                    167: *     .. Local Scalars ..
                    168:       INTEGER            CURLVL, CURPRB, CURR, I, IGIVCL, IGIVNM,
                    169:      $                   IGIVPT, INDXQ, IPERM, IPRMPT, IQ, IQPTR, IWREM,
                    170:      $                   J, K, LGN, LL, MATSIZ, MSD2, SMLSIZ, SMM1,
                    171:      $                   SPM1, SPM2, SUBMAT, SUBPBS, TLVLS
                    172:       DOUBLE PRECISION   TEMP
                    173: *     ..
                    174: *     .. External Subroutines ..
                    175:       EXTERNAL           DCOPY, DSTEQR, XERBLA, ZCOPY, ZLACRM, ZLAED7
                    176: *     ..
                    177: *     .. External Functions ..
                    178:       INTEGER            ILAENV
                    179:       EXTERNAL           ILAENV
                    180: *     ..
                    181: *     .. Intrinsic Functions ..
                    182:       INTRINSIC          ABS, DBLE, INT, LOG, MAX
                    183: *     ..
                    184: *     .. Executable Statements ..
                    185: *
                    186: *     Test the input parameters.
                    187: *
                    188:       INFO = 0
                    189: *
                    190: *     IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN
                    191: *        INFO = -1
                    192: *     ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )
                    193: *    $        THEN
                    194:       IF( QSIZ.LT.MAX( 0, N ) ) THEN
                    195:          INFO = -1
                    196:       ELSE IF( N.LT.0 ) THEN
                    197:          INFO = -2
                    198:       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
                    199:          INFO = -6
                    200:       ELSE IF( LDQS.LT.MAX( 1, N ) ) THEN
                    201:          INFO = -8
                    202:       END IF
                    203:       IF( INFO.NE.0 ) THEN
                    204:          CALL XERBLA( 'ZLAED0', -INFO )
                    205:          RETURN
                    206:       END IF
                    207: *
                    208: *     Quick return if possible
                    209: *
                    210:       IF( N.EQ.0 )
                    211:      $   RETURN
                    212: *
                    213:       SMLSIZ = ILAENV( 9, 'ZLAED0', ' ', 0, 0, 0, 0 )
                    214: *
                    215: *     Determine the size and placement of the submatrices, and save in
                    216: *     the leading elements of IWORK.
                    217: *
                    218:       IWORK( 1 ) = N
                    219:       SUBPBS = 1
                    220:       TLVLS = 0
                    221:    10 CONTINUE
                    222:       IF( IWORK( SUBPBS ).GT.SMLSIZ ) THEN
                    223:          DO 20 J = SUBPBS, 1, -1
                    224:             IWORK( 2*J ) = ( IWORK( J )+1 ) / 2
                    225:             IWORK( 2*J-1 ) = IWORK( J ) / 2
                    226:    20    CONTINUE
                    227:          TLVLS = TLVLS + 1
                    228:          SUBPBS = 2*SUBPBS
                    229:          GO TO 10
                    230:       END IF
                    231:       DO 30 J = 2, SUBPBS
                    232:          IWORK( J ) = IWORK( J ) + IWORK( J-1 )
                    233:    30 CONTINUE
                    234: *
                    235: *     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1
                    236: *     using rank-1 modifications (cuts).
                    237: *
                    238:       SPM1 = SUBPBS - 1
                    239:       DO 40 I = 1, SPM1
                    240:          SUBMAT = IWORK( I ) + 1
                    241:          SMM1 = SUBMAT - 1
                    242:          D( SMM1 ) = D( SMM1 ) - ABS( E( SMM1 ) )
                    243:          D( SUBMAT ) = D( SUBMAT ) - ABS( E( SMM1 ) )
                    244:    40 CONTINUE
                    245: *
                    246:       INDXQ = 4*N + 3
                    247: *
                    248: *     Set up workspaces for eigenvalues only/accumulate new vectors
                    249: *     routine
                    250: *
                    251:       TEMP = LOG( DBLE( N ) ) / LOG( TWO )
                    252:       LGN = INT( TEMP )
                    253:       IF( 2**LGN.LT.N )
                    254:      $   LGN = LGN + 1
                    255:       IF( 2**LGN.LT.N )
                    256:      $   LGN = LGN + 1
                    257:       IPRMPT = INDXQ + N + 1
                    258:       IPERM = IPRMPT + N*LGN
                    259:       IQPTR = IPERM + N*LGN
                    260:       IGIVPT = IQPTR + N + 2
                    261:       IGIVCL = IGIVPT + N*LGN
                    262: *
                    263:       IGIVNM = 1
                    264:       IQ = IGIVNM + 2*N*LGN
                    265:       IWREM = IQ + N**2 + 1
                    266: *     Initialize pointers
                    267:       DO 50 I = 0, SUBPBS
                    268:          IWORK( IPRMPT+I ) = 1
                    269:          IWORK( IGIVPT+I ) = 1
                    270:    50 CONTINUE
                    271:       IWORK( IQPTR ) = 1
                    272: *
                    273: *     Solve each submatrix eigenproblem at the bottom of the divide and
                    274: *     conquer tree.
                    275: *
                    276:       CURR = 0
                    277:       DO 70 I = 0, SPM1
                    278:          IF( I.EQ.0 ) THEN
                    279:             SUBMAT = 1
                    280:             MATSIZ = IWORK( 1 )
                    281:          ELSE
                    282:             SUBMAT = IWORK( I ) + 1
                    283:             MATSIZ = IWORK( I+1 ) - IWORK( I )
                    284:          END IF
                    285:          LL = IQ - 1 + IWORK( IQPTR+CURR )
                    286:          CALL DSTEQR( 'I', MATSIZ, D( SUBMAT ), E( SUBMAT ),
                    287:      $                RWORK( LL ), MATSIZ, RWORK, INFO )
                    288:          CALL ZLACRM( QSIZ, MATSIZ, Q( 1, SUBMAT ), LDQ, RWORK( LL ),
                    289:      $                MATSIZ, QSTORE( 1, SUBMAT ), LDQS,
                    290:      $                RWORK( IWREM ) )
                    291:          IWORK( IQPTR+CURR+1 ) = IWORK( IQPTR+CURR ) + MATSIZ**2
                    292:          CURR = CURR + 1
                    293:          IF( INFO.GT.0 ) THEN
                    294:             INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
                    295:             RETURN
                    296:          END IF
                    297:          K = 1
                    298:          DO 60 J = SUBMAT, IWORK( I+1 )
                    299:             IWORK( INDXQ+J ) = K
                    300:             K = K + 1
                    301:    60    CONTINUE
                    302:    70 CONTINUE
                    303: *
                    304: *     Successively merge eigensystems of adjacent submatrices
                    305: *     into eigensystem for the corresponding larger matrix.
                    306: *
                    307: *     while ( SUBPBS > 1 )
                    308: *
                    309:       CURLVL = 1
                    310:    80 CONTINUE
                    311:       IF( SUBPBS.GT.1 ) THEN
                    312:          SPM2 = SUBPBS - 2
                    313:          DO 90 I = 0, SPM2, 2
                    314:             IF( I.EQ.0 ) THEN
                    315:                SUBMAT = 1
                    316:                MATSIZ = IWORK( 2 )
                    317:                MSD2 = IWORK( 1 )
                    318:                CURPRB = 0
                    319:             ELSE
                    320:                SUBMAT = IWORK( I ) + 1
                    321:                MATSIZ = IWORK( I+2 ) - IWORK( I )
                    322:                MSD2 = MATSIZ / 2
                    323:                CURPRB = CURPRB + 1
                    324:             END IF
                    325: *
                    326: *     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)
                    327: *     into an eigensystem of size MATSIZ.  ZLAED7 handles the case
                    328: *     when the eigenvectors of a full or band Hermitian matrix (which
                    329: *     was reduced to tridiagonal form) are desired.
                    330: *
                    331: *     I am free to use Q as a valuable working space until Loop 150.
                    332: *
                    333:             CALL ZLAED7( MATSIZ, MSD2, QSIZ, TLVLS, CURLVL, CURPRB,
                    334:      $                   D( SUBMAT ), QSTORE( 1, SUBMAT ), LDQS,
                    335:      $                   E( SUBMAT+MSD2-1 ), IWORK( INDXQ+SUBMAT ),
                    336:      $                   RWORK( IQ ), IWORK( IQPTR ), IWORK( IPRMPT ),
                    337:      $                   IWORK( IPERM ), IWORK( IGIVPT ),
                    338:      $                   IWORK( IGIVCL ), RWORK( IGIVNM ),
                    339:      $                   Q( 1, SUBMAT ), RWORK( IWREM ),
                    340:      $                   IWORK( SUBPBS+1 ), INFO )
                    341:             IF( INFO.GT.0 ) THEN
                    342:                INFO = SUBMAT*( N+1 ) + SUBMAT + MATSIZ - 1
                    343:                RETURN
                    344:             END IF
                    345:             IWORK( I / 2+1 ) = IWORK( I+2 )
                    346:    90    CONTINUE
                    347:          SUBPBS = SUBPBS / 2
                    348:          CURLVL = CURLVL + 1
                    349:          GO TO 80
                    350:       END IF
                    351: *
                    352: *     end while
                    353: *
                    354: *     Re-merge the eigenvalues/vectors which were deflated at the final
                    355: *     merge step.
                    356: *
                    357:       DO 100 I = 1, N
                    358:          J = IWORK( INDXQ+I )
                    359:          RWORK( I ) = D( J )
                    360:          CALL ZCOPY( QSIZ, QSTORE( 1, J ), 1, Q( 1, I ), 1 )
                    361:   100 CONTINUE
                    362:       CALL DCOPY( N, RWORK, 1, D, 1 )
                    363: *
                    364:       RETURN
                    365: *
                    366: *     End of ZLAED0
                    367: *
                    368:       END

CVSweb interface <joel.bertrand@systella.fr>