File:  [local] / rpl / lapack / lapack / zla_gbrfsx_extended.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:27 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZLA_GBRFSX_EXTENDED improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZLA_GBRFSX_EXTENDED + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
   22: *                                       NRHS, AB, LDAB, AFB, LDAFB, IPIV,
   23: *                                       COLEQU, C, B, LDB, Y, LDY,
   24: *                                       BERR_OUT, N_NORMS, ERR_BNDS_NORM,
   25: *                                       ERR_BNDS_COMP, RES, AYB, DY,
   26: *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
   27: *                                       DZ_UB, IGNORE_CWISE, INFO )
   28: *
   29: *       .. Scalar Arguments ..
   30: *       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
   31: *      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
   32: *       LOGICAL            COLEQU, IGNORE_CWISE
   33: *       DOUBLE PRECISION   RTHRESH, DZ_UB
   34: *       ..
   35: *       .. Array Arguments ..
   36: *       INTEGER            IPIV( * )
   37: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   38: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   39: *       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
   40: *      $                   ERR_BNDS_NORM( NRHS, * ),
   41: *      $                   ERR_BNDS_COMP( NRHS, * )
   42: *       ..
   43: *
   44: *
   45: *> \par Purpose:
   46: *  =============
   47: *>
   48: *> \verbatim
   49: *>
   50: *> ZLA_GBRFSX_EXTENDED improves the computed solution to a system of
   51: *> linear equations by performing extra-precise iterative refinement
   52: *> and provides error bounds and backward error estimates for the solution.
   53: *> This subroutine is called by ZGBRFSX to perform iterative refinement.
   54: *> In addition to normwise error bound, the code provides maximum
   55: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
   56: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
   57: *> subroutine is only responsible for setting the second fields of
   58: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
   59: *> \endverbatim
   60: *
   61: *  Arguments:
   62: *  ==========
   63: *
   64: *> \param[in] PREC_TYPE
   65: *> \verbatim
   66: *>          PREC_TYPE is INTEGER
   67: *>     Specifies the intermediate precision to be used in refinement.
   68: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and P
   69: *>          = 'S':  Single
   70: *>          = 'D':  Double
   71: *>          = 'I':  Indigenous
   72: *>          = 'X' or 'E':  Extra
   73: *> \endverbatim
   74: *>
   75: *> \param[in] TRANS_TYPE
   76: *> \verbatim
   77: *>          TRANS_TYPE is INTEGER
   78: *>     Specifies the transposition operation on A.
   79: *>     The value is defined by ILATRANS(T) where T is a CHARACTER and T
   80: *>          = 'N':  No transpose
   81: *>          = 'T':  Transpose
   82: *>          = 'C':  Conjugate transpose
   83: *> \endverbatim
   84: *>
   85: *> \param[in] N
   86: *> \verbatim
   87: *>          N is INTEGER
   88: *>     The number of linear equations, i.e., the order of the
   89: *>     matrix A.  N >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] KL
   93: *> \verbatim
   94: *>          KL is INTEGER
   95: *>     The number of subdiagonals within the band of A.  KL >= 0.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] KU
   99: *> \verbatim
  100: *>          KU is INTEGER
  101: *>     The number of superdiagonals within the band of A.  KU >= 0
  102: *> \endverbatim
  103: *>
  104: *> \param[in] NRHS
  105: *> \verbatim
  106: *>          NRHS is INTEGER
  107: *>     The number of right-hand-sides, i.e., the number of columns of the
  108: *>     matrix B.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] AB
  112: *> \verbatim
  113: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
  114: *>     On entry, the N-by-N matrix A.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDAB
  118: *> \verbatim
  119: *>          LDAB is INTEGER
  120: *>     The leading dimension of the array A.  LDAB >= max(1,N).
  121: *> \endverbatim
  122: *>
  123: *> \param[in] AFB
  124: *> \verbatim
  125: *>          AFB is COMPLEX*16 array, dimension (LDAF,N)
  126: *>     The factors L and U from the factorization
  127: *>     A = P*L*U as computed by ZGBTRF.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] LDAFB
  131: *> \verbatim
  132: *>          LDAFB is INTEGER
  133: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
  134: *> \endverbatim
  135: *>
  136: *> \param[in] IPIV
  137: *> \verbatim
  138: *>          IPIV is INTEGER array, dimension (N)
  139: *>     The pivot indices from the factorization A = P*L*U
  140: *>     as computed by ZGBTRF; row i of the matrix was interchanged
  141: *>     with row IPIV(i).
  142: *> \endverbatim
  143: *>
  144: *> \param[in] COLEQU
  145: *> \verbatim
  146: *>          COLEQU is LOGICAL
  147: *>     If .TRUE. then column equilibration was done to A before calling
  148: *>     this routine. This is needed to compute the solution and error
  149: *>     bounds correctly.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] C
  153: *> \verbatim
  154: *>          C is DOUBLE PRECISION array, dimension (N)
  155: *>     The column scale factors for A. If COLEQU = .FALSE., C
  156: *>     is not accessed. If C is input, each element of C should be a power
  157: *>     of the radix to ensure a reliable solution and error estimates.
  158: *>     Scaling by powers of the radix does not cause rounding errors unless
  159: *>     the result underflows or overflows. Rounding errors during scaling
  160: *>     lead to refining with a matrix that is not equivalent to the
  161: *>     input matrix, producing error estimates that may not be
  162: *>     reliable.
  163: *> \endverbatim
  164: *>
  165: *> \param[in] B
  166: *> \verbatim
  167: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  168: *>     The right-hand-side matrix B.
  169: *> \endverbatim
  170: *>
  171: *> \param[in] LDB
  172: *> \verbatim
  173: *>          LDB is INTEGER
  174: *>     The leading dimension of the array B.  LDB >= max(1,N).
  175: *> \endverbatim
  176: *>
  177: *> \param[in,out] Y
  178: *> \verbatim
  179: *>          Y is COMPLEX*16 array, dimension (LDY,NRHS)
  180: *>     On entry, the solution matrix X, as computed by ZGBTRS.
  181: *>     On exit, the improved solution matrix Y.
  182: *> \endverbatim
  183: *>
  184: *> \param[in] LDY
  185: *> \verbatim
  186: *>          LDY is INTEGER
  187: *>     The leading dimension of the array Y.  LDY >= max(1,N).
  188: *> \endverbatim
  189: *>
  190: *> \param[out] BERR_OUT
  191: *> \verbatim
  192: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  193: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
  194: *>     error for right-hand-side j from the formula
  195: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  196: *>     where abs(Z) is the componentwise absolute value of the matrix
  197: *>     or vector Z. This is computed by ZLA_LIN_BERR.
  198: *> \endverbatim
  199: *>
  200: *> \param[in] N_NORMS
  201: *> \verbatim
  202: *>          N_NORMS is INTEGER
  203: *>     Determines which error bounds to return (see ERR_BNDS_NORM
  204: *>     and ERR_BNDS_COMP).
  205: *>     If N_NORMS >= 1 return normwise error bounds.
  206: *>     If N_NORMS >= 2 return componentwise error bounds.
  207: *> \endverbatim
  208: *>
  209: *> \param[in,out] ERR_BNDS_NORM
  210: *> \verbatim
  211: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  212: *>     For each right-hand side, this array contains information about
  213: *>     various error bounds and condition numbers corresponding to the
  214: *>     normwise relative error, which is defined as follows:
  215: *>
  216: *>     Normwise relative error in the ith solution vector:
  217: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  218: *>            ------------------------------
  219: *>                  max_j abs(X(j,i))
  220: *>
  221: *>     The array is indexed by the type of error information as described
  222: *>     below. There currently are up to three pieces of information
  223: *>     returned.
  224: *>
  225: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  226: *>     right-hand side.
  227: *>
  228: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  229: *>     three fields:
  230: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  231: *>              reciprocal condition number is less than the threshold
  232: *>              sqrt(n) * slamch('Epsilon').
  233: *>
  234: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  235: *>              almost certainly within a factor of 10 of the true error
  236: *>              so long as the next entry is greater than the threshold
  237: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  238: *>              be trusted if the previous boolean is true.
  239: *>
  240: *>     err = 3  Reciprocal condition number: Estimated normwise
  241: *>              reciprocal condition number.  Compared with the threshold
  242: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  243: *>              estimate is "guaranteed". These reciprocal condition
  244: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  245: *>              appropriately scaled matrix Z.
  246: *>              Let Z = S*A, where S scales each row by a power of the
  247: *>              radix so all absolute row sums of Z are approximately 1.
  248: *>
  249: *>     This subroutine is only responsible for setting the second field
  250: *>     above.
  251: *>     See Lapack Working Note 165 for further details and extra
  252: *>     cautions.
  253: *> \endverbatim
  254: *>
  255: *> \param[in,out] ERR_BNDS_COMP
  256: *> \verbatim
  257: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  258: *>     For each right-hand side, this array contains information about
  259: *>     various error bounds and condition numbers corresponding to the
  260: *>     componentwise relative error, which is defined as follows:
  261: *>
  262: *>     Componentwise relative error in the ith solution vector:
  263: *>                    abs(XTRUE(j,i) - X(j,i))
  264: *>             max_j ----------------------
  265: *>                         abs(X(j,i))
  266: *>
  267: *>     The array is indexed by the right-hand side i (on which the
  268: *>     componentwise relative error depends), and the type of error
  269: *>     information as described below. There currently are up to three
  270: *>     pieces of information returned for each right-hand side. If
  271: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  272: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
  273: *>     the first (:,N_ERR_BNDS) entries are returned.
  274: *>
  275: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  276: *>     right-hand side.
  277: *>
  278: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  279: *>     three fields:
  280: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  281: *>              reciprocal condition number is less than the threshold
  282: *>              sqrt(n) * slamch('Epsilon').
  283: *>
  284: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  285: *>              almost certainly within a factor of 10 of the true error
  286: *>              so long as the next entry is greater than the threshold
  287: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
  288: *>              be trusted if the previous boolean is true.
  289: *>
  290: *>     err = 3  Reciprocal condition number: Estimated componentwise
  291: *>              reciprocal condition number.  Compared with the threshold
  292: *>              sqrt(n) * slamch('Epsilon') to determine if the error
  293: *>              estimate is "guaranteed". These reciprocal condition
  294: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  295: *>              appropriately scaled matrix Z.
  296: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  297: *>              current right-hand side and S scales each row of
  298: *>              A*diag(x) by a power of the radix so all absolute row
  299: *>              sums of Z are approximately 1.
  300: *>
  301: *>     This subroutine is only responsible for setting the second field
  302: *>     above.
  303: *>     See Lapack Working Note 165 for further details and extra
  304: *>     cautions.
  305: *> \endverbatim
  306: *>
  307: *> \param[in] RES
  308: *> \verbatim
  309: *>          RES is COMPLEX*16 array, dimension (N)
  310: *>     Workspace to hold the intermediate residual.
  311: *> \endverbatim
  312: *>
  313: *> \param[in] AYB
  314: *> \verbatim
  315: *>          AYB is DOUBLE PRECISION array, dimension (N)
  316: *>     Workspace.
  317: *> \endverbatim
  318: *>
  319: *> \param[in] DY
  320: *> \verbatim
  321: *>          DY is COMPLEX*16 array, dimension (N)
  322: *>     Workspace to hold the intermediate solution.
  323: *> \endverbatim
  324: *>
  325: *> \param[in] Y_TAIL
  326: *> \verbatim
  327: *>          Y_TAIL is COMPLEX*16 array, dimension (N)
  328: *>     Workspace to hold the trailing bits of the intermediate solution.
  329: *> \endverbatim
  330: *>
  331: *> \param[in] RCOND
  332: *> \verbatim
  333: *>          RCOND is DOUBLE PRECISION
  334: *>     Reciprocal scaled condition number.  This is an estimate of the
  335: *>     reciprocal Skeel condition number of the matrix A after
  336: *>     equilibration (if done).  If this is less than the machine
  337: *>     precision (in particular, if it is zero), the matrix is singular
  338: *>     to working precision.  Note that the error may still be small even
  339: *>     if this number is very small and the matrix appears ill-
  340: *>     conditioned.
  341: *> \endverbatim
  342: *>
  343: *> \param[in] ITHRESH
  344: *> \verbatim
  345: *>          ITHRESH is INTEGER
  346: *>     The maximum number of residual computations allowed for
  347: *>     refinement. The default is 10. For 'aggressive' set to 100 to
  348: *>     permit convergence using approximate factorizations or
  349: *>     factorizations other than LU. If the factorization uses a
  350: *>     technique other than Gaussian elimination, the guarantees in
  351: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  352: *> \endverbatim
  353: *>
  354: *> \param[in] RTHRESH
  355: *> \verbatim
  356: *>          RTHRESH is DOUBLE PRECISION
  357: *>     Determines when to stop refinement if the error estimate stops
  358: *>     decreasing. Refinement will stop when the next solution no longer
  359: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  360: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  361: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
  362: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
  363: *>     for more details.
  364: *> \endverbatim
  365: *>
  366: *> \param[in] DZ_UB
  367: *> \verbatim
  368: *>          DZ_UB is DOUBLE PRECISION
  369: *>     Determines when to start considering componentwise convergence.
  370: *>     Componentwise convergence is only considered after each component
  371: *>     of the solution Y is stable, which we define as the relative
  372: *>     change in each component being less than DZ_UB. The default value
  373: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  374: *>     more details.
  375: *> \endverbatim
  376: *>
  377: *> \param[in] IGNORE_CWISE
  378: *> \verbatim
  379: *>          IGNORE_CWISE is LOGICAL
  380: *>     If .TRUE. then ignore componentwise convergence. Default value
  381: *>     is .FALSE..
  382: *> \endverbatim
  383: *>
  384: *> \param[out] INFO
  385: *> \verbatim
  386: *>          INFO is INTEGER
  387: *>       = 0:  Successful exit.
  388: *>       < 0:  if INFO = -i, the ith argument to ZGBTRS had an illegal
  389: *>             value
  390: *> \endverbatim
  391: *
  392: *  Authors:
  393: *  ========
  394: *
  395: *> \author Univ. of Tennessee
  396: *> \author Univ. of California Berkeley
  397: *> \author Univ. of Colorado Denver
  398: *> \author NAG Ltd.
  399: *
  400: *> \ingroup complex16GBcomputational
  401: *
  402: *  =====================================================================
  403:       SUBROUTINE ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
  404:      $                                NRHS, AB, LDAB, AFB, LDAFB, IPIV,
  405:      $                                COLEQU, C, B, LDB, Y, LDY,
  406:      $                                BERR_OUT, N_NORMS, ERR_BNDS_NORM,
  407:      $                                ERR_BNDS_COMP, RES, AYB, DY,
  408:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
  409:      $                                DZ_UB, IGNORE_CWISE, INFO )
  410: *
  411: *  -- LAPACK computational routine --
  412: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  413: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  414: *
  415: *     .. Scalar Arguments ..
  416:       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
  417:      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
  418:       LOGICAL            COLEQU, IGNORE_CWISE
  419:       DOUBLE PRECISION   RTHRESH, DZ_UB
  420: *     ..
  421: *     .. Array Arguments ..
  422:       INTEGER            IPIV( * )
  423:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  424:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  425:       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
  426:      $                   ERR_BNDS_NORM( NRHS, * ),
  427:      $                   ERR_BNDS_COMP( NRHS, * )
  428: *     ..
  429: *
  430: *  =====================================================================
  431: *
  432: *     .. Local Scalars ..
  433:       CHARACTER          TRANS
  434:       INTEGER            CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
  435:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  436:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  437:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  438:      $                   EPS, HUGEVAL, INCR_THRESH
  439:       LOGICAL            INCR_PREC
  440:       COMPLEX*16         ZDUM
  441: *     ..
  442: *     .. Parameters ..
  443:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  444:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
  445:      $                   EXTRA_Y
  446:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  447:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
  448:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  449:      $                   EXTRA_Y = 2 )
  450:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  451:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  452:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  453:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  454:      $                   BERR_I = 3 )
  455:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  456:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  457:      $                   PIV_GROWTH_I = 9 )
  458:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  459:      $                   LA_LINRX_CWISE_I
  460:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  461:      $                   LA_LINRX_ITHRESH_I = 2 )
  462:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  463:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  464:      $                   LA_LINRX_RCOND_I
  465:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  466:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  467: *     ..
  468: *     .. External Subroutines ..
  469:       EXTERNAL           ZAXPY, ZCOPY, ZGBTRS, ZGBMV, BLAS_ZGBMV_X,
  470:      $                   BLAS_ZGBMV2_X, ZLA_GBAMV, ZLA_WWADDW, DLAMCH,
  471:      $                   CHLA_TRANSTYPE, ZLA_LIN_BERR
  472:       DOUBLE PRECISION   DLAMCH
  473:       CHARACTER          CHLA_TRANSTYPE
  474: *     ..
  475: *     .. Intrinsic Functions..
  476:       INTRINSIC          ABS, MAX, MIN
  477: *     ..
  478: *     .. Statement Functions ..
  479:       DOUBLE PRECISION   CABS1
  480: *     ..
  481: *     .. Statement Function Definitions ..
  482:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  483: *     ..
  484: *     .. Executable Statements ..
  485: *
  486:       IF (INFO.NE.0) RETURN
  487:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
  488:       EPS = DLAMCH( 'Epsilon' )
  489:       HUGEVAL = DLAMCH( 'Overflow' )
  490: *     Force HUGEVAL to Inf
  491:       HUGEVAL = HUGEVAL * HUGEVAL
  492: *     Using HUGEVAL may lead to spurious underflows.
  493:       INCR_THRESH = DBLE( N ) * EPS
  494:       M = KL+KU+1
  495: 
  496:       DO J = 1, NRHS
  497:          Y_PREC_STATE = EXTRA_RESIDUAL
  498:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  499:             DO I = 1, N
  500:                Y_TAIL( I ) = 0.0D+0
  501:             END DO
  502:          END IF
  503: 
  504:          DXRAT = 0.0D+0
  505:          DXRATMAX = 0.0D+0
  506:          DZRAT = 0.0D+0
  507:          DZRATMAX = 0.0D+0
  508:          FINAL_DX_X = HUGEVAL
  509:          FINAL_DZ_Z = HUGEVAL
  510:          PREVNORMDX = HUGEVAL
  511:          PREV_DZ_Z = HUGEVAL
  512:          DZ_Z = HUGEVAL
  513:          DX_X = HUGEVAL
  514: 
  515:          X_STATE = WORKING_STATE
  516:          Z_STATE = UNSTABLE_STATE
  517:          INCR_PREC = .FALSE.
  518: 
  519:          DO CNT = 1, ITHRESH
  520: *
  521: *        Compute residual RES = B_s - op(A_s) * Y,
  522: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  523: *
  524:             CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  525:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  526:                CALL ZGBMV( TRANS, M, N, KL, KU, (-1.0D+0,0.0D+0), AB,
  527:      $              LDAB, Y( 1, J ), 1, (1.0D+0,0.0D+0), RES, 1 )
  528:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
  529:                CALL BLAS_ZGBMV_X( TRANS_TYPE, N, N, KL, KU,
  530:      $              (-1.0D+0,0.0D+0), AB, LDAB, Y( 1, J ), 1,
  531:      $              (1.0D+0,0.0D+0), RES, 1, PREC_TYPE )
  532:             ELSE
  533:                CALL BLAS_ZGBMV2_X( TRANS_TYPE, N, N, KL, KU,
  534:      $              (-1.0D+0,0.0D+0), AB, LDAB, Y( 1, J ), Y_TAIL, 1,
  535:      $              (1.0D+0,0.0D+0), RES, 1, PREC_TYPE )
  536:             END IF
  537: 
  538: !        XXX: RES is no longer needed.
  539:             CALL ZCOPY( N, RES, 1, DY, 1 )
  540:             CALL ZGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, DY, N,
  541:      $           INFO )
  542: *
  543: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  544: *
  545:             NORMX = 0.0D+0
  546:             NORMY = 0.0D+0
  547:             NORMDX = 0.0D+0
  548:             DZ_Z = 0.0D+0
  549:             YMIN = HUGEVAL
  550: 
  551:             DO I = 1, N
  552:                YK = CABS1( Y( I, J ) )
  553:                DYK = CABS1( DY( I ) )
  554: 
  555:                IF (YK .NE. 0.0D+0) THEN
  556:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  557:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  558:                   DZ_Z = HUGEVAL
  559:                END IF
  560: 
  561:                YMIN = MIN( YMIN, YK )
  562: 
  563:                NORMY = MAX( NORMY, YK )
  564: 
  565:                IF ( COLEQU ) THEN
  566:                   NORMX = MAX( NORMX, YK * C( I ) )
  567:                   NORMDX = MAX(NORMDX, DYK * C(I))
  568:                ELSE
  569:                   NORMX = NORMY
  570:                   NORMDX = MAX( NORMDX, DYK )
  571:                END IF
  572:             END DO
  573: 
  574:             IF ( NORMX .NE. 0.0D+0 ) THEN
  575:                DX_X = NORMDX / NORMX
  576:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  577:                DX_X = 0.0D+0
  578:             ELSE
  579:                DX_X = HUGEVAL
  580:             END IF
  581: 
  582:             DXRAT = NORMDX / PREVNORMDX
  583:             DZRAT = DZ_Z / PREV_DZ_Z
  584: *
  585: *         Check termination criteria.
  586: *
  587:             IF (.NOT.IGNORE_CWISE
  588:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
  589:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
  590:      $           INCR_PREC = .TRUE.
  591: 
  592:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  593:      $           X_STATE = WORKING_STATE
  594:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  595:                IF ( DX_X .LE. EPS ) THEN
  596:                   X_STATE = CONV_STATE
  597:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  598:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  599:                      INCR_PREC = .TRUE.
  600:                   ELSE
  601:                      X_STATE = NOPROG_STATE
  602:                   END IF
  603:                ELSE
  604:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  605:                END IF
  606:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  607:             END IF
  608: 
  609:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  610:      $           Z_STATE = WORKING_STATE
  611:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  612:      $           Z_STATE = WORKING_STATE
  613:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  614:                IF ( DZ_Z .LE. EPS ) THEN
  615:                   Z_STATE = CONV_STATE
  616:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  617:                   Z_STATE = UNSTABLE_STATE
  618:                   DZRATMAX = 0.0D+0
  619:                   FINAL_DZ_Z = HUGEVAL
  620:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  621:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  622:                      INCR_PREC = .TRUE.
  623:                   ELSE
  624:                      Z_STATE = NOPROG_STATE
  625:                   END IF
  626:                ELSE
  627:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  628:                END IF
  629:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  630:             END IF
  631: *
  632: *           Exit if both normwise and componentwise stopped working,
  633: *           but if componentwise is unstable, let it go at least two
  634: *           iterations.
  635: *
  636:             IF ( X_STATE.NE.WORKING_STATE ) THEN
  637:                IF ( IGNORE_CWISE ) GOTO 666
  638:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
  639:      $              GOTO 666
  640:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
  641:             END IF
  642: 
  643:             IF ( INCR_PREC ) THEN
  644:                INCR_PREC = .FALSE.
  645:                Y_PREC_STATE = Y_PREC_STATE + 1
  646:                DO I = 1, N
  647:                   Y_TAIL( I ) = 0.0D+0
  648:                END DO
  649:             END IF
  650: 
  651:             PREVNORMDX = NORMDX
  652:             PREV_DZ_Z = DZ_Z
  653: *
  654: *           Update soluton.
  655: *
  656:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
  657:                CALL ZAXPY( N, (1.0D+0,0.0D+0), DY, 1, Y(1,J), 1 )
  658:             ELSE
  659:                CALL ZLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
  660:             END IF
  661: 
  662:          END DO
  663: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  664:  666     CONTINUE
  665: *
  666: *     Set final_* when cnt hits ithresh.
  667: *
  668:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  669:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  670: *
  671: *     Compute error bounds.
  672: *
  673:          IF ( N_NORMS .GE. 1 ) THEN
  674:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  675:      $           FINAL_DX_X / (1 - DXRATMAX)
  676:          END IF
  677:          IF ( N_NORMS .GE. 2 ) THEN
  678:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  679:      $           FINAL_DZ_Z / (1 - DZRATMAX)
  680:          END IF
  681: *
  682: *     Compute componentwise relative backward error from formula
  683: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  684: *     where abs(Z) is the componentwise absolute value of the matrix
  685: *     or vector Z.
  686: *
  687: *        Compute residual RES = B_s - op(A_s) * Y,
  688: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  689: *
  690:          CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  691:          CALL ZGBMV( TRANS, N, N, KL, KU, (-1.0D+0,0.0D+0), AB, LDAB,
  692:      $        Y(1,J), 1, (1.0D+0,0.0D+0), RES, 1 )
  693: 
  694:          DO I = 1, N
  695:             AYB( I ) = CABS1( B( I, J ) )
  696:          END DO
  697: *
  698: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  699: *
  700:         CALL ZLA_GBAMV( TRANS_TYPE, N, N, KL, KU, 1.0D+0,
  701:      $        AB, LDAB, Y(1, J), 1, 1.0D+0, AYB, 1 )
  702: 
  703:          CALL ZLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
  704: *
  705: *     End of loop for each RHS.
  706: *
  707:       END DO
  708: *
  709:       RETURN
  710: *
  711: *     End of ZLA_GBRFSX_EXTENDED
  712: *
  713:       END

CVSweb interface <joel.bertrand@systella.fr>