Annotation of rpl/lapack/lapack/zla_gbrfsx_extended.f, revision 1.17

1.8       bertrand    1: *> \brief \b ZLA_GBRFSX_EXTENDED improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
1.5       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.12      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.5       bertrand    7: *
                      8: *> \htmlonly
1.12      bertrand    9: *> Download ZLA_GBRFSX_EXTENDED + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gbrfsx_extended.f">
1.5       bertrand   15: *> [TXT]</a>
1.12      bertrand   16: *> \endhtmlonly
1.5       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
                     22: *                                       NRHS, AB, LDAB, AFB, LDAFB, IPIV,
                     23: *                                       COLEQU, C, B, LDB, Y, LDY,
                     24: *                                       BERR_OUT, N_NORMS, ERR_BNDS_NORM,
                     25: *                                       ERR_BNDS_COMP, RES, AYB, DY,
                     26: *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
                     27: *                                       DZ_UB, IGNORE_CWISE, INFO )
1.12      bertrand   28: *
1.5       bertrand   29: *       .. Scalar Arguments ..
                     30: *       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
                     31: *      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
                     32: *       LOGICAL            COLEQU, IGNORE_CWISE
                     33: *       DOUBLE PRECISION   RTHRESH, DZ_UB
                     34: *       ..
                     35: *       .. Array Arguments ..
                     36: *       INTEGER            IPIV( * )
                     37: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     38: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                     39: *       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
                     40: *      $                   ERR_BNDS_NORM( NRHS, * ),
                     41: *      $                   ERR_BNDS_COMP( NRHS, * )
                     42: *       ..
1.12      bertrand   43: *
1.5       bertrand   44: *
                     45: *> \par Purpose:
                     46: *  =============
                     47: *>
                     48: *> \verbatim
                     49: *>
                     50: *> ZLA_GBRFSX_EXTENDED improves the computed solution to a system of
                     51: *> linear equations by performing extra-precise iterative refinement
                     52: *> and provides error bounds and backward error estimates for the solution.
                     53: *> This subroutine is called by ZGBRFSX to perform iterative refinement.
                     54: *> In addition to normwise error bound, the code provides maximum
                     55: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
                     56: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
1.17    ! bertrand   57: *> subroutine is only responsible for setting the second fields of
1.5       bertrand   58: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
                     59: *> \endverbatim
                     60: *
                     61: *  Arguments:
                     62: *  ==========
                     63: *
                     64: *> \param[in] PREC_TYPE
                     65: *> \verbatim
                     66: *>          PREC_TYPE is INTEGER
                     67: *>     Specifies the intermediate precision to be used in refinement.
1.16      bertrand   68: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and P
                     69: *>          = 'S':  Single
1.5       bertrand   70: *>          = 'D':  Double
                     71: *>          = 'I':  Indigenous
1.16      bertrand   72: *>          = 'X' or 'E':  Extra
1.5       bertrand   73: *> \endverbatim
                     74: *>
                     75: *> \param[in] TRANS_TYPE
                     76: *> \verbatim
                     77: *>          TRANS_TYPE is INTEGER
                     78: *>     Specifies the transposition operation on A.
1.16      bertrand   79: *>     The value is defined by ILATRANS(T) where T is a CHARACTER and T
                     80: *>          = 'N':  No transpose
1.5       bertrand   81: *>          = 'T':  Transpose
                     82: *>          = 'C':  Conjugate transpose
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] N
                     86: *> \verbatim
                     87: *>          N is INTEGER
                     88: *>     The number of linear equations, i.e., the order of the
                     89: *>     matrix A.  N >= 0.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] KL
                     93: *> \verbatim
                     94: *>          KL is INTEGER
                     95: *>     The number of subdiagonals within the band of A.  KL >= 0.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] KU
                     99: *> \verbatim
                    100: *>          KU is INTEGER
                    101: *>     The number of superdiagonals within the band of A.  KU >= 0
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] NRHS
                    105: *> \verbatim
                    106: *>          NRHS is INTEGER
                    107: *>     The number of right-hand-sides, i.e., the number of columns of the
                    108: *>     matrix B.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in] AB
                    112: *> \verbatim
                    113: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
                    114: *>     On entry, the N-by-N matrix A.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] LDAB
                    118: *> \verbatim
                    119: *>          LDAB is INTEGER
                    120: *>     The leading dimension of the array A.  LDAB >= max(1,N).
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in] AFB
                    124: *> \verbatim
                    125: *>          AFB is COMPLEX*16 array, dimension (LDAF,N)
                    126: *>     The factors L and U from the factorization
                    127: *>     A = P*L*U as computed by ZGBTRF.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in] LDAFB
                    131: *> \verbatim
                    132: *>          LDAFB is INTEGER
                    133: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in] IPIV
                    137: *> \verbatim
                    138: *>          IPIV is INTEGER array, dimension (N)
                    139: *>     The pivot indices from the factorization A = P*L*U
                    140: *>     as computed by ZGBTRF; row i of the matrix was interchanged
                    141: *>     with row IPIV(i).
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[in] COLEQU
                    145: *> \verbatim
                    146: *>          COLEQU is LOGICAL
                    147: *>     If .TRUE. then column equilibration was done to A before calling
                    148: *>     this routine. This is needed to compute the solution and error
                    149: *>     bounds correctly.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[in] C
                    153: *> \verbatim
                    154: *>          C is DOUBLE PRECISION array, dimension (N)
                    155: *>     The column scale factors for A. If COLEQU = .FALSE., C
                    156: *>     is not accessed. If C is input, each element of C should be a power
                    157: *>     of the radix to ensure a reliable solution and error estimates.
                    158: *>     Scaling by powers of the radix does not cause rounding errors unless
                    159: *>     the result underflows or overflows. Rounding errors during scaling
                    160: *>     lead to refining with a matrix that is not equivalent to the
                    161: *>     input matrix, producing error estimates that may not be
                    162: *>     reliable.
                    163: *> \endverbatim
                    164: *>
                    165: *> \param[in] B
                    166: *> \verbatim
                    167: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    168: *>     The right-hand-side matrix B.
                    169: *> \endverbatim
                    170: *>
                    171: *> \param[in] LDB
                    172: *> \verbatim
                    173: *>          LDB is INTEGER
                    174: *>     The leading dimension of the array B.  LDB >= max(1,N).
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[in,out] Y
                    178: *> \verbatim
                    179: *>          Y is COMPLEX*16 array, dimension (LDY,NRHS)
                    180: *>     On entry, the solution matrix X, as computed by ZGBTRS.
                    181: *>     On exit, the improved solution matrix Y.
                    182: *> \endverbatim
                    183: *>
                    184: *> \param[in] LDY
                    185: *> \verbatim
                    186: *>          LDY is INTEGER
                    187: *>     The leading dimension of the array Y.  LDY >= max(1,N).
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[out] BERR_OUT
                    191: *> \verbatim
                    192: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
                    193: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
                    194: *>     error for right-hand-side j from the formula
                    195: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    196: *>     where abs(Z) is the componentwise absolute value of the matrix
                    197: *>     or vector Z. This is computed by ZLA_LIN_BERR.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[in] N_NORMS
                    201: *> \verbatim
                    202: *>          N_NORMS is INTEGER
                    203: *>     Determines which error bounds to return (see ERR_BNDS_NORM
                    204: *>     and ERR_BNDS_COMP).
                    205: *>     If N_NORMS >= 1 return normwise error bounds.
                    206: *>     If N_NORMS >= 2 return componentwise error bounds.
                    207: *> \endverbatim
                    208: *>
                    209: *> \param[in,out] ERR_BNDS_NORM
                    210: *> \verbatim
1.14      bertrand  211: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
1.5       bertrand  212: *>     For each right-hand side, this array contains information about
                    213: *>     various error bounds and condition numbers corresponding to the
                    214: *>     normwise relative error, which is defined as follows:
                    215: *>
                    216: *>     Normwise relative error in the ith solution vector:
                    217: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
                    218: *>            ------------------------------
                    219: *>                  max_j abs(X(j,i))
                    220: *>
                    221: *>     The array is indexed by the type of error information as described
                    222: *>     below. There currently are up to three pieces of information
                    223: *>     returned.
                    224: *>
                    225: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    226: *>     right-hand side.
                    227: *>
                    228: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
                    229: *>     three fields:
                    230: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    231: *>              reciprocal condition number is less than the threshold
                    232: *>              sqrt(n) * slamch('Epsilon').
                    233: *>
                    234: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    235: *>              almost certainly within a factor of 10 of the true error
                    236: *>              so long as the next entry is greater than the threshold
                    237: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    238: *>              be trusted if the previous boolean is true.
                    239: *>
                    240: *>     err = 3  Reciprocal condition number: Estimated normwise
                    241: *>              reciprocal condition number.  Compared with the threshold
                    242: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    243: *>              estimate is "guaranteed". These reciprocal condition
                    244: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    245: *>              appropriately scaled matrix Z.
                    246: *>              Let Z = S*A, where S scales each row by a power of the
                    247: *>              radix so all absolute row sums of Z are approximately 1.
                    248: *>
                    249: *>     This subroutine is only responsible for setting the second field
                    250: *>     above.
                    251: *>     See Lapack Working Note 165 for further details and extra
                    252: *>     cautions.
                    253: *> \endverbatim
                    254: *>
                    255: *> \param[in,out] ERR_BNDS_COMP
                    256: *> \verbatim
1.14      bertrand  257: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
1.5       bertrand  258: *>     For each right-hand side, this array contains information about
                    259: *>     various error bounds and condition numbers corresponding to the
                    260: *>     componentwise relative error, which is defined as follows:
                    261: *>
                    262: *>     Componentwise relative error in the ith solution vector:
                    263: *>                    abs(XTRUE(j,i) - X(j,i))
                    264: *>             max_j ----------------------
                    265: *>                         abs(X(j,i))
                    266: *>
                    267: *>     The array is indexed by the right-hand side i (on which the
                    268: *>     componentwise relative error depends), and the type of error
                    269: *>     information as described below. There currently are up to three
                    270: *>     pieces of information returned for each right-hand side. If
                    271: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
1.16      bertrand  272: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
1.5       bertrand  273: *>     the first (:,N_ERR_BNDS) entries are returned.
                    274: *>
                    275: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    276: *>     right-hand side.
                    277: *>
                    278: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
                    279: *>     three fields:
                    280: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    281: *>              reciprocal condition number is less than the threshold
                    282: *>              sqrt(n) * slamch('Epsilon').
                    283: *>
                    284: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    285: *>              almost certainly within a factor of 10 of the true error
                    286: *>              so long as the next entry is greater than the threshold
                    287: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    288: *>              be trusted if the previous boolean is true.
                    289: *>
                    290: *>     err = 3  Reciprocal condition number: Estimated componentwise
                    291: *>              reciprocal condition number.  Compared with the threshold
                    292: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    293: *>              estimate is "guaranteed". These reciprocal condition
                    294: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    295: *>              appropriately scaled matrix Z.
                    296: *>              Let Z = S*(A*diag(x)), where x is the solution for the
                    297: *>              current right-hand side and S scales each row of
                    298: *>              A*diag(x) by a power of the radix so all absolute row
                    299: *>              sums of Z are approximately 1.
                    300: *>
                    301: *>     This subroutine is only responsible for setting the second field
                    302: *>     above.
                    303: *>     See Lapack Working Note 165 for further details and extra
                    304: *>     cautions.
                    305: *> \endverbatim
                    306: *>
                    307: *> \param[in] RES
                    308: *> \verbatim
                    309: *>          RES is COMPLEX*16 array, dimension (N)
                    310: *>     Workspace to hold the intermediate residual.
                    311: *> \endverbatim
                    312: *>
                    313: *> \param[in] AYB
                    314: *> \verbatim
                    315: *>          AYB is DOUBLE PRECISION array, dimension (N)
                    316: *>     Workspace.
                    317: *> \endverbatim
                    318: *>
                    319: *> \param[in] DY
                    320: *> \verbatim
                    321: *>          DY is COMPLEX*16 array, dimension (N)
                    322: *>     Workspace to hold the intermediate solution.
                    323: *> \endverbatim
                    324: *>
                    325: *> \param[in] Y_TAIL
                    326: *> \verbatim
                    327: *>          Y_TAIL is COMPLEX*16 array, dimension (N)
                    328: *>     Workspace to hold the trailing bits of the intermediate solution.
                    329: *> \endverbatim
                    330: *>
                    331: *> \param[in] RCOND
                    332: *> \verbatim
                    333: *>          RCOND is DOUBLE PRECISION
                    334: *>     Reciprocal scaled condition number.  This is an estimate of the
                    335: *>     reciprocal Skeel condition number of the matrix A after
                    336: *>     equilibration (if done).  If this is less than the machine
                    337: *>     precision (in particular, if it is zero), the matrix is singular
                    338: *>     to working precision.  Note that the error may still be small even
                    339: *>     if this number is very small and the matrix appears ill-
                    340: *>     conditioned.
                    341: *> \endverbatim
                    342: *>
                    343: *> \param[in] ITHRESH
                    344: *> \verbatim
                    345: *>          ITHRESH is INTEGER
                    346: *>     The maximum number of residual computations allowed for
                    347: *>     refinement. The default is 10. For 'aggressive' set to 100 to
                    348: *>     permit convergence using approximate factorizations or
                    349: *>     factorizations other than LU. If the factorization uses a
                    350: *>     technique other than Gaussian elimination, the guarantees in
                    351: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
                    352: *> \endverbatim
                    353: *>
                    354: *> \param[in] RTHRESH
                    355: *> \verbatim
                    356: *>          RTHRESH is DOUBLE PRECISION
                    357: *>     Determines when to stop refinement if the error estimate stops
                    358: *>     decreasing. Refinement will stop when the next solution no longer
                    359: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
                    360: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
                    361: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
                    362: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
                    363: *>     for more details.
                    364: *> \endverbatim
                    365: *>
                    366: *> \param[in] DZ_UB
                    367: *> \verbatim
                    368: *>          DZ_UB is DOUBLE PRECISION
                    369: *>     Determines when to start considering componentwise convergence.
                    370: *>     Componentwise convergence is only considered after each component
1.17    ! bertrand  371: *>     of the solution Y is stable, which we define as the relative
1.5       bertrand  372: *>     change in each component being less than DZ_UB. The default value
                    373: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
                    374: *>     more details.
                    375: *> \endverbatim
                    376: *>
                    377: *> \param[in] IGNORE_CWISE
                    378: *> \verbatim
                    379: *>          IGNORE_CWISE is LOGICAL
                    380: *>     If .TRUE. then ignore componentwise convergence. Default value
                    381: *>     is .FALSE..
                    382: *> \endverbatim
                    383: *>
                    384: *> \param[out] INFO
                    385: *> \verbatim
                    386: *>          INFO is INTEGER
                    387: *>       = 0:  Successful exit.
                    388: *>       < 0:  if INFO = -i, the ith argument to ZGBTRS had an illegal
                    389: *>             value
                    390: *> \endverbatim
                    391: *
                    392: *  Authors:
                    393: *  ========
                    394: *
1.12      bertrand  395: *> \author Univ. of Tennessee
                    396: *> \author Univ. of California Berkeley
                    397: *> \author Univ. of Colorado Denver
                    398: *> \author NAG Ltd.
1.5       bertrand  399: *
                    400: *> \ingroup complex16GBcomputational
                    401: *
                    402: *  =====================================================================
1.1       bertrand  403:       SUBROUTINE ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
                    404:      $                                NRHS, AB, LDAB, AFB, LDAFB, IPIV,
                    405:      $                                COLEQU, C, B, LDB, Y, LDY,
                    406:      $                                BERR_OUT, N_NORMS, ERR_BNDS_NORM,
                    407:      $                                ERR_BNDS_COMP, RES, AYB, DY,
                    408:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
                    409:      $                                DZ_UB, IGNORE_CWISE, INFO )
                    410: *
1.17    ! bertrand  411: *  -- LAPACK computational routine --
1.5       bertrand  412: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    413: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.1       bertrand  414: *
                    415: *     .. Scalar Arguments ..
                    416:       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
                    417:      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
                    418:       LOGICAL            COLEQU, IGNORE_CWISE
                    419:       DOUBLE PRECISION   RTHRESH, DZ_UB
                    420: *     ..
                    421: *     .. Array Arguments ..
                    422:       INTEGER            IPIV( * )
                    423:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    424:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                    425:       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT( * ),
                    426:      $                   ERR_BNDS_NORM( NRHS, * ),
                    427:      $                   ERR_BNDS_COMP( NRHS, * )
                    428: *     ..
                    429: *
                    430: *  =====================================================================
                    431: *
                    432: *     .. Local Scalars ..
                    433:       CHARACTER          TRANS
                    434:       INTEGER            CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
                    435:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
                    436:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
                    437:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
                    438:      $                   EPS, HUGEVAL, INCR_THRESH
                    439:       LOGICAL            INCR_PREC
                    440:       COMPLEX*16         ZDUM
                    441: *     ..
                    442: *     .. Parameters ..
                    443:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
                    444:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
                    445:      $                   EXTRA_Y
                    446:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
                    447:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
                    448:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
                    449:      $                   EXTRA_Y = 2 )
                    450:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    451:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    452:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    453:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    454:      $                   BERR_I = 3 )
                    455:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    456:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    457:      $                   PIV_GROWTH_I = 9 )
                    458:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    459:      $                   LA_LINRX_CWISE_I
                    460:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    461:      $                   LA_LINRX_ITHRESH_I = 2 )
                    462:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    463:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    464:      $                   LA_LINRX_RCOND_I
                    465:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    466:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    467: *     ..
                    468: *     .. External Subroutines ..
                    469:       EXTERNAL           ZAXPY, ZCOPY, ZGBTRS, ZGBMV, BLAS_ZGBMV_X,
                    470:      $                   BLAS_ZGBMV2_X, ZLA_GBAMV, ZLA_WWADDW, DLAMCH,
                    471:      $                   CHLA_TRANSTYPE, ZLA_LIN_BERR
                    472:       DOUBLE PRECISION   DLAMCH
                    473:       CHARACTER          CHLA_TRANSTYPE
                    474: *     ..
                    475: *     .. Intrinsic Functions..
                    476:       INTRINSIC          ABS, MAX, MIN
                    477: *     ..
                    478: *     .. Statement Functions ..
                    479:       DOUBLE PRECISION   CABS1
                    480: *     ..
                    481: *     .. Statement Function Definitions ..
                    482:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    483: *     ..
                    484: *     .. Executable Statements ..
                    485: *
                    486:       IF (INFO.NE.0) RETURN
                    487:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
                    488:       EPS = DLAMCH( 'Epsilon' )
                    489:       HUGEVAL = DLAMCH( 'Overflow' )
                    490: *     Force HUGEVAL to Inf
                    491:       HUGEVAL = HUGEVAL * HUGEVAL
                    492: *     Using HUGEVAL may lead to spurious underflows.
                    493:       INCR_THRESH = DBLE( N ) * EPS
                    494:       M = KL+KU+1
                    495: 
                    496:       DO J = 1, NRHS
                    497:          Y_PREC_STATE = EXTRA_RESIDUAL
                    498:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
                    499:             DO I = 1, N
                    500:                Y_TAIL( I ) = 0.0D+0
                    501:             END DO
                    502:          END IF
                    503: 
                    504:          DXRAT = 0.0D+0
                    505:          DXRATMAX = 0.0D+0
                    506:          DZRAT = 0.0D+0
                    507:          DZRATMAX = 0.0D+0
                    508:          FINAL_DX_X = HUGEVAL
                    509:          FINAL_DZ_Z = HUGEVAL
                    510:          PREVNORMDX = HUGEVAL
                    511:          PREV_DZ_Z = HUGEVAL
                    512:          DZ_Z = HUGEVAL
                    513:          DX_X = HUGEVAL
                    514: 
                    515:          X_STATE = WORKING_STATE
                    516:          Z_STATE = UNSTABLE_STATE
                    517:          INCR_PREC = .FALSE.
                    518: 
                    519:          DO CNT = 1, ITHRESH
                    520: *
                    521: *        Compute residual RES = B_s - op(A_s) * Y,
                    522: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
                    523: *
                    524:             CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
                    525:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
                    526:                CALL ZGBMV( TRANS, M, N, KL, KU, (-1.0D+0,0.0D+0), AB,
                    527:      $              LDAB, Y( 1, J ), 1, (1.0D+0,0.0D+0), RES, 1 )
                    528:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
                    529:                CALL BLAS_ZGBMV_X( TRANS_TYPE, N, N, KL, KU,
                    530:      $              (-1.0D+0,0.0D+0), AB, LDAB, Y( 1, J ), 1,
                    531:      $              (1.0D+0,0.0D+0), RES, 1, PREC_TYPE )
                    532:             ELSE
                    533:                CALL BLAS_ZGBMV2_X( TRANS_TYPE, N, N, KL, KU,
                    534:      $              (-1.0D+0,0.0D+0), AB, LDAB, Y( 1, J ), Y_TAIL, 1,
                    535:      $              (1.0D+0,0.0D+0), RES, 1, PREC_TYPE )
                    536:             END IF
                    537: 
                    538: !        XXX: RES is no longer needed.
                    539:             CALL ZCOPY( N, RES, 1, DY, 1 )
                    540:             CALL ZGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, DY, N,
                    541:      $           INFO )
                    542: *
                    543: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
                    544: *
                    545:             NORMX = 0.0D+0
                    546:             NORMY = 0.0D+0
                    547:             NORMDX = 0.0D+0
                    548:             DZ_Z = 0.0D+0
                    549:             YMIN = HUGEVAL
                    550: 
                    551:             DO I = 1, N
                    552:                YK = CABS1( Y( I, J ) )
                    553:                DYK = CABS1( DY( I ) )
                    554: 
                    555:                IF (YK .NE. 0.0D+0) THEN
                    556:                   DZ_Z = MAX( DZ_Z, DYK / YK )
                    557:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
                    558:                   DZ_Z = HUGEVAL
                    559:                END IF
                    560: 
                    561:                YMIN = MIN( YMIN, YK )
                    562: 
                    563:                NORMY = MAX( NORMY, YK )
                    564: 
                    565:                IF ( COLEQU ) THEN
                    566:                   NORMX = MAX( NORMX, YK * C( I ) )
                    567:                   NORMDX = MAX(NORMDX, DYK * C(I))
                    568:                ELSE
                    569:                   NORMX = NORMY
                    570:                   NORMDX = MAX( NORMDX, DYK )
                    571:                END IF
                    572:             END DO
                    573: 
                    574:             IF ( NORMX .NE. 0.0D+0 ) THEN
                    575:                DX_X = NORMDX / NORMX
                    576:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
                    577:                DX_X = 0.0D+0
                    578:             ELSE
                    579:                DX_X = HUGEVAL
                    580:             END IF
                    581: 
                    582:             DXRAT = NORMDX / PREVNORMDX
                    583:             DZRAT = DZ_Z / PREV_DZ_Z
                    584: *
                    585: *         Check termination criteria.
                    586: *
                    587:             IF (.NOT.IGNORE_CWISE
                    588:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
                    589:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
                    590:      $           INCR_PREC = .TRUE.
                    591: 
                    592:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
                    593:      $           X_STATE = WORKING_STATE
                    594:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
                    595:                IF ( DX_X .LE. EPS ) THEN
                    596:                   X_STATE = CONV_STATE
                    597:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
                    598:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    599:                      INCR_PREC = .TRUE.
                    600:                   ELSE
                    601:                      X_STATE = NOPROG_STATE
                    602:                   END IF
                    603:                ELSE
                    604:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
                    605:                END IF
                    606:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
                    607:             END IF
                    608: 
                    609:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
                    610:      $           Z_STATE = WORKING_STATE
                    611:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
                    612:      $           Z_STATE = WORKING_STATE
                    613:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
                    614:                IF ( DZ_Z .LE. EPS ) THEN
                    615:                   Z_STATE = CONV_STATE
                    616:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
                    617:                   Z_STATE = UNSTABLE_STATE
                    618:                   DZRATMAX = 0.0D+0
                    619:                   FINAL_DZ_Z = HUGEVAL
                    620:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
                    621:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    622:                      INCR_PREC = .TRUE.
                    623:                   ELSE
                    624:                      Z_STATE = NOPROG_STATE
                    625:                   END IF
                    626:                ELSE
                    627:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
                    628:                END IF
                    629:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    630:             END IF
                    631: *
                    632: *           Exit if both normwise and componentwise stopped working,
                    633: *           but if componentwise is unstable, let it go at least two
                    634: *           iterations.
                    635: *
                    636:             IF ( X_STATE.NE.WORKING_STATE ) THEN
                    637:                IF ( IGNORE_CWISE ) GOTO 666
                    638:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
                    639:      $              GOTO 666
                    640:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
                    641:             END IF
                    642: 
                    643:             IF ( INCR_PREC ) THEN
                    644:                INCR_PREC = .FALSE.
                    645:                Y_PREC_STATE = Y_PREC_STATE + 1
                    646:                DO I = 1, N
                    647:                   Y_TAIL( I ) = 0.0D+0
                    648:                END DO
                    649:             END IF
                    650: 
                    651:             PREVNORMDX = NORMDX
                    652:             PREV_DZ_Z = DZ_Z
                    653: *
                    654: *           Update soluton.
                    655: *
                    656:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
                    657:                CALL ZAXPY( N, (1.0D+0,0.0D+0), DY, 1, Y(1,J), 1 )
                    658:             ELSE
                    659:                CALL ZLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
                    660:             END IF
                    661: 
                    662:          END DO
                    663: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
                    664:  666     CONTINUE
                    665: *
                    666: *     Set final_* when cnt hits ithresh.
                    667: *
                    668:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
                    669:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    670: *
                    671: *     Compute error bounds.
                    672: *
                    673:          IF ( N_NORMS .GE. 1 ) THEN
                    674:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
                    675:      $           FINAL_DX_X / (1 - DXRATMAX)
                    676:          END IF
                    677:          IF ( N_NORMS .GE. 2 ) THEN
                    678:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
                    679:      $           FINAL_DZ_Z / (1 - DZRATMAX)
                    680:          END IF
                    681: *
                    682: *     Compute componentwise relative backward error from formula
                    683: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    684: *     where abs(Z) is the componentwise absolute value of the matrix
                    685: *     or vector Z.
                    686: *
                    687: *        Compute residual RES = B_s - op(A_s) * Y,
                    688: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
                    689: *
                    690:          CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
                    691:          CALL ZGBMV( TRANS, N, N, KL, KU, (-1.0D+0,0.0D+0), AB, LDAB,
                    692:      $        Y(1,J), 1, (1.0D+0,0.0D+0), RES, 1 )
                    693: 
                    694:          DO I = 1, N
                    695:             AYB( I ) = CABS1( B( I, J ) )
                    696:          END DO
                    697: *
                    698: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
                    699: *
                    700:         CALL ZLA_GBAMV( TRANS_TYPE, N, N, KL, KU, 1.0D+0,
                    701:      $        AB, LDAB, Y(1, J), 1, 1.0D+0, AYB, 1 )
                    702: 
                    703:          CALL ZLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
                    704: *
                    705: *     End of loop for each RHS.
                    706: *
                    707:       END DO
                    708: *
                    709:       RETURN
1.17    ! bertrand  710: *
        !           711: *     End of ZLA_GBRFSX_EXTENDED
        !           712: *
1.1       bertrand  713:       END

CVSweb interface <joel.bertrand@systella.fr>