File:  [local] / rpl / lapack / lapack / zhpgvx.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:04:06 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE ZHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
    2:      $                   IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
    3:      $                   IWORK, IFAIL, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBZ, RANGE, UPLO
   12:       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
   13:       DOUBLE PRECISION   ABSTOL, VL, VU
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IFAIL( * ), IWORK( * )
   17:       DOUBLE PRECISION   RWORK( * ), W( * )
   18:       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  ZHPGVX computes selected eigenvalues and, optionally, eigenvectors
   25: *  of a complex generalized Hermitian-definite eigenproblem, of the form
   26: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
   27: *  B are assumed to be Hermitian, stored in packed format, and B is also
   28: *  positive definite.  Eigenvalues and eigenvectors can be selected by
   29: *  specifying either a range of values or a range of indices for the
   30: *  desired eigenvalues.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  ITYPE   (input) INTEGER
   36: *          Specifies the problem type to be solved:
   37: *          = 1:  A*x = (lambda)*B*x
   38: *          = 2:  A*B*x = (lambda)*x
   39: *          = 3:  B*A*x = (lambda)*x
   40: *
   41: *  JOBZ    (input) CHARACTER*1
   42: *          = 'N':  Compute eigenvalues only;
   43: *          = 'V':  Compute eigenvalues and eigenvectors.
   44: *
   45: *  RANGE   (input) CHARACTER*1
   46: *          = 'A': all eigenvalues will be found;
   47: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   48: *                 will be found;
   49: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   50: *
   51: *  UPLO    (input) CHARACTER*1
   52: *          = 'U':  Upper triangles of A and B are stored;
   53: *          = 'L':  Lower triangles of A and B are stored.
   54: *
   55: *  N       (input) INTEGER
   56: *          The order of the matrices A and B.  N >= 0.
   57: *
   58: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
   59: *          On entry, the upper or lower triangle of the Hermitian matrix
   60: *          A, packed columnwise in a linear array.  The j-th column of A
   61: *          is stored in the array AP as follows:
   62: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   63: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   64: *
   65: *          On exit, the contents of AP are destroyed.
   66: *
   67: *  BP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
   68: *          On entry, the upper or lower triangle of the Hermitian matrix
   69: *          B, packed columnwise in a linear array.  The j-th column of B
   70: *          is stored in the array BP as follows:
   71: *          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
   72: *          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
   73: *
   74: *          On exit, the triangular factor U or L from the Cholesky
   75: *          factorization B = U**H*U or B = L*L**H, in the same storage
   76: *          format as B.
   77: *
   78: *  VL      (input) DOUBLE PRECISION
   79: *  VU      (input) DOUBLE PRECISION
   80: *          If RANGE='V', the lower and upper bounds of the interval to
   81: *          be searched for eigenvalues. VL < VU.
   82: *          Not referenced if RANGE = 'A' or 'I'.
   83: *
   84: *  IL      (input) INTEGER
   85: *  IU      (input) INTEGER
   86: *          If RANGE='I', the indices (in ascending order) of the
   87: *          smallest and largest eigenvalues to be returned.
   88: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
   89: *          Not referenced if RANGE = 'A' or 'V'.
   90: *
   91: *  ABSTOL  (input) DOUBLE PRECISION
   92: *          The absolute error tolerance for the eigenvalues.
   93: *          An approximate eigenvalue is accepted as converged
   94: *          when it is determined to lie in an interval [a,b]
   95: *          of width less than or equal to
   96: *
   97: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
   98: *
   99: *          where EPS is the machine precision.  If ABSTOL is less than
  100: *          or equal to zero, then  EPS*|T|  will be used in its place,
  101: *          where |T| is the 1-norm of the tridiagonal matrix obtained
  102: *          by reducing AP to tridiagonal form.
  103: *
  104: *          Eigenvalues will be computed most accurately when ABSTOL is
  105: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  106: *          If this routine returns with INFO>0, indicating that some
  107: *          eigenvectors did not converge, try setting ABSTOL to
  108: *          2*DLAMCH('S').
  109: *
  110: *  M       (output) INTEGER
  111: *          The total number of eigenvalues found.  0 <= M <= N.
  112: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  113: *
  114: *  W       (output) DOUBLE PRECISION array, dimension (N)
  115: *          On normal exit, the first M elements contain the selected
  116: *          eigenvalues in ascending order.
  117: *
  118: *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
  119: *          If JOBZ = 'N', then Z is not referenced.
  120: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  121: *          contain the orthonormal eigenvectors of the matrix A
  122: *          corresponding to the selected eigenvalues, with the i-th
  123: *          column of Z holding the eigenvector associated with W(i).
  124: *          The eigenvectors are normalized as follows:
  125: *          if ITYPE = 1 or 2, Z**H*B*Z = I;
  126: *          if ITYPE = 3, Z**H*inv(B)*Z = I.
  127: *
  128: *          If an eigenvector fails to converge, then that column of Z
  129: *          contains the latest approximation to the eigenvector, and the
  130: *          index of the eigenvector is returned in IFAIL.
  131: *          Note: the user must ensure that at least max(1,M) columns are
  132: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  133: *          is not known in advance and an upper bound must be used.
  134: *
  135: *  LDZ     (input) INTEGER
  136: *          The leading dimension of the array Z.  LDZ >= 1, and if
  137: *          JOBZ = 'V', LDZ >= max(1,N).
  138: *
  139: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
  140: *
  141: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
  142: *
  143: *  IWORK   (workspace) INTEGER array, dimension (5*N)
  144: *
  145: *  IFAIL   (output) INTEGER array, dimension (N)
  146: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
  147: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  148: *          indices of the eigenvectors that failed to converge.
  149: *          If JOBZ = 'N', then IFAIL is not referenced.
  150: *
  151: *  INFO    (output) INTEGER
  152: *          = 0:  successful exit
  153: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  154: *          > 0:  ZPPTRF or ZHPEVX returned an error code:
  155: *             <= N:  if INFO = i, ZHPEVX failed to converge;
  156: *                    i eigenvectors failed to converge.  Their indices
  157: *                    are stored in array IFAIL.
  158: *             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
  159: *                    minor of order i of B is not positive definite.
  160: *                    The factorization of B could not be completed and
  161: *                    no eigenvalues or eigenvectors were computed.
  162: *
  163: *  Further Details
  164: *  ===============
  165: *
  166: *  Based on contributions by
  167: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  168: *
  169: *  =====================================================================
  170: *
  171: *     .. Local Scalars ..
  172:       LOGICAL            ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
  173:       CHARACTER          TRANS
  174:       INTEGER            J
  175: *     ..
  176: *     .. External Functions ..
  177:       LOGICAL            LSAME
  178:       EXTERNAL           LSAME
  179: *     ..
  180: *     .. External Subroutines ..
  181:       EXTERNAL           XERBLA, ZHPEVX, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
  182: *     ..
  183: *     .. Intrinsic Functions ..
  184:       INTRINSIC          MIN
  185: *     ..
  186: *     .. Executable Statements ..
  187: *
  188: *     Test the input parameters.
  189: *
  190:       WANTZ = LSAME( JOBZ, 'V' )
  191:       UPPER = LSAME( UPLO, 'U' )
  192:       ALLEIG = LSAME( RANGE, 'A' )
  193:       VALEIG = LSAME( RANGE, 'V' )
  194:       INDEIG = LSAME( RANGE, 'I' )
  195: *
  196:       INFO = 0
  197:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  198:          INFO = -1
  199:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  200:          INFO = -2
  201:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  202:          INFO = -3
  203:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  204:          INFO = -4
  205:       ELSE IF( N.LT.0 ) THEN
  206:          INFO = -5
  207:       ELSE 
  208:          IF( VALEIG ) THEN
  209:             IF( N.GT.0 .AND. VU.LE.VL ) THEN
  210:                INFO = -9
  211:             END IF
  212:          ELSE IF( INDEIG ) THEN
  213:             IF( IL.LT.1 ) THEN
  214:                INFO = -10
  215:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  216:                INFO = -11
  217:             END IF
  218:          END IF
  219:       END IF
  220:       IF( INFO.EQ.0 ) THEN
  221:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  222:             INFO = -16
  223:          END IF
  224:       END IF
  225: *
  226:       IF( INFO.NE.0 ) THEN
  227:          CALL XERBLA( 'ZHPGVX', -INFO )
  228:          RETURN
  229:       END IF
  230: *
  231: *     Quick return if possible
  232: *
  233:       IF( N.EQ.0 )
  234:      $   RETURN
  235: *
  236: *     Form a Cholesky factorization of B.
  237: *
  238:       CALL ZPPTRF( UPLO, N, BP, INFO )
  239:       IF( INFO.NE.0 ) THEN
  240:          INFO = N + INFO
  241:          RETURN
  242:       END IF
  243: *
  244: *     Transform problem to standard eigenvalue problem and solve.
  245: *
  246:       CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
  247:       CALL ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
  248:      $             W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
  249: *
  250:       IF( WANTZ ) THEN
  251: *
  252: *        Backtransform eigenvectors to the original problem.
  253: *
  254:          IF( INFO.GT.0 )
  255:      $      M = INFO - 1
  256:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  257: *
  258: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  259: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
  260: *
  261:             IF( UPPER ) THEN
  262:                TRANS = 'N'
  263:             ELSE
  264:                TRANS = 'C'
  265:             END IF
  266: *
  267:             DO 10 J = 1, M
  268:                CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  269:      $                     1 )
  270:    10       CONTINUE
  271: *
  272:          ELSE IF( ITYPE.EQ.3 ) THEN
  273: *
  274: *           For B*A*x=(lambda)*x;
  275: *           backtransform eigenvectors: x = L*y or U'*y
  276: *
  277:             IF( UPPER ) THEN
  278:                TRANS = 'C'
  279:             ELSE
  280:                TRANS = 'N'
  281:             END IF
  282: *
  283:             DO 20 J = 1, M
  284:                CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
  285:      $                     1 )
  286:    20       CONTINUE
  287:          END IF
  288:       END IF
  289: *
  290:       RETURN
  291: *
  292: *     End of ZHPGVX
  293: *
  294:       END

CVSweb interface <joel.bertrand@systella.fr>