Annotation of rpl/lapack/lapack/zhpgvx.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE ZHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU,
                      2:      $                   IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
                      3:      $                   IWORK, IFAIL, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBZ, RANGE, UPLO
                     12:       INTEGER            IL, INFO, ITYPE, IU, LDZ, M, N
                     13:       DOUBLE PRECISION   ABSTOL, VL, VU
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IFAIL( * ), IWORK( * )
                     17:       DOUBLE PRECISION   RWORK( * ), W( * )
                     18:       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  ZHPGVX computes selected eigenvalues and, optionally, eigenvectors
                     25: *  of a complex generalized Hermitian-definite eigenproblem, of the form
                     26: *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
                     27: *  B are assumed to be Hermitian, stored in packed format, and B is also
                     28: *  positive definite.  Eigenvalues and eigenvectors can be selected by
                     29: *  specifying either a range of values or a range of indices for the
                     30: *  desired eigenvalues.
                     31: *
                     32: *  Arguments
                     33: *  =========
                     34: *
                     35: *  ITYPE   (input) INTEGER
                     36: *          Specifies the problem type to be solved:
                     37: *          = 1:  A*x = (lambda)*B*x
                     38: *          = 2:  A*B*x = (lambda)*x
                     39: *          = 3:  B*A*x = (lambda)*x
                     40: *
                     41: *  JOBZ    (input) CHARACTER*1
                     42: *          = 'N':  Compute eigenvalues only;
                     43: *          = 'V':  Compute eigenvalues and eigenvectors.
                     44: *
                     45: *  RANGE   (input) CHARACTER*1
                     46: *          = 'A': all eigenvalues will be found;
                     47: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     48: *                 will be found;
                     49: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     50: *
                     51: *  UPLO    (input) CHARACTER*1
                     52: *          = 'U':  Upper triangles of A and B are stored;
                     53: *          = 'L':  Lower triangles of A and B are stored.
                     54: *
                     55: *  N       (input) INTEGER
                     56: *          The order of the matrices A and B.  N >= 0.
                     57: *
                     58: *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
                     59: *          On entry, the upper or lower triangle of the Hermitian matrix
                     60: *          A, packed columnwise in a linear array.  The j-th column of A
                     61: *          is stored in the array AP as follows:
                     62: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     63: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     64: *
                     65: *          On exit, the contents of AP are destroyed.
                     66: *
                     67: *  BP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
                     68: *          On entry, the upper or lower triangle of the Hermitian matrix
                     69: *          B, packed columnwise in a linear array.  The j-th column of B
                     70: *          is stored in the array BP as follows:
                     71: *          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
                     72: *          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
                     73: *
                     74: *          On exit, the triangular factor U or L from the Cholesky
                     75: *          factorization B = U**H*U or B = L*L**H, in the same storage
                     76: *          format as B.
                     77: *
                     78: *  VL      (input) DOUBLE PRECISION
                     79: *  VU      (input) DOUBLE PRECISION
                     80: *          If RANGE='V', the lower and upper bounds of the interval to
                     81: *          be searched for eigenvalues. VL < VU.
                     82: *          Not referenced if RANGE = 'A' or 'I'.
                     83: *
                     84: *  IL      (input) INTEGER
                     85: *  IU      (input) INTEGER
                     86: *          If RANGE='I', the indices (in ascending order) of the
                     87: *          smallest and largest eigenvalues to be returned.
                     88: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                     89: *          Not referenced if RANGE = 'A' or 'V'.
                     90: *
                     91: *  ABSTOL  (input) DOUBLE PRECISION
                     92: *          The absolute error tolerance for the eigenvalues.
                     93: *          An approximate eigenvalue is accepted as converged
                     94: *          when it is determined to lie in an interval [a,b]
                     95: *          of width less than or equal to
                     96: *
                     97: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                     98: *
                     99: *          where EPS is the machine precision.  If ABSTOL is less than
                    100: *          or equal to zero, then  EPS*|T|  will be used in its place,
                    101: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                    102: *          by reducing AP to tridiagonal form.
                    103: *
                    104: *          Eigenvalues will be computed most accurately when ABSTOL is
                    105: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                    106: *          If this routine returns with INFO>0, indicating that some
                    107: *          eigenvectors did not converge, try setting ABSTOL to
                    108: *          2*DLAMCH('S').
                    109: *
                    110: *  M       (output) INTEGER
                    111: *          The total number of eigenvalues found.  0 <= M <= N.
                    112: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    113: *
                    114: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    115: *          On normal exit, the first M elements contain the selected
                    116: *          eigenvalues in ascending order.
                    117: *
                    118: *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
                    119: *          If JOBZ = 'N', then Z is not referenced.
                    120: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    121: *          contain the orthonormal eigenvectors of the matrix A
                    122: *          corresponding to the selected eigenvalues, with the i-th
                    123: *          column of Z holding the eigenvector associated with W(i).
                    124: *          The eigenvectors are normalized as follows:
                    125: *          if ITYPE = 1 or 2, Z**H*B*Z = I;
                    126: *          if ITYPE = 3, Z**H*inv(B)*Z = I.
                    127: *
                    128: *          If an eigenvector fails to converge, then that column of Z
                    129: *          contains the latest approximation to the eigenvector, and the
                    130: *          index of the eigenvector is returned in IFAIL.
                    131: *          Note: the user must ensure that at least max(1,M) columns are
                    132: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    133: *          is not known in advance and an upper bound must be used.
                    134: *
                    135: *  LDZ     (input) INTEGER
                    136: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    137: *          JOBZ = 'V', LDZ >= max(1,N).
                    138: *
                    139: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                    140: *
                    141: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
                    142: *
                    143: *  IWORK   (workspace) INTEGER array, dimension (5*N)
                    144: *
                    145: *  IFAIL   (output) INTEGER array, dimension (N)
                    146: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    147: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    148: *          indices of the eigenvectors that failed to converge.
                    149: *          If JOBZ = 'N', then IFAIL is not referenced.
                    150: *
                    151: *  INFO    (output) INTEGER
                    152: *          = 0:  successful exit
                    153: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    154: *          > 0:  ZPPTRF or ZHPEVX returned an error code:
                    155: *             <= N:  if INFO = i, ZHPEVX failed to converge;
                    156: *                    i eigenvectors failed to converge.  Their indices
                    157: *                    are stored in array IFAIL.
                    158: *             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
                    159: *                    minor of order i of B is not positive definite.
                    160: *                    The factorization of B could not be completed and
                    161: *                    no eigenvalues or eigenvectors were computed.
                    162: *
                    163: *  Further Details
                    164: *  ===============
                    165: *
                    166: *  Based on contributions by
                    167: *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
                    168: *
                    169: *  =====================================================================
                    170: *
                    171: *     .. Local Scalars ..
                    172:       LOGICAL            ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
                    173:       CHARACTER          TRANS
                    174:       INTEGER            J
                    175: *     ..
                    176: *     .. External Functions ..
                    177:       LOGICAL            LSAME
                    178:       EXTERNAL           LSAME
                    179: *     ..
                    180: *     .. External Subroutines ..
                    181:       EXTERNAL           XERBLA, ZHPEVX, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
                    182: *     ..
                    183: *     .. Intrinsic Functions ..
                    184:       INTRINSIC          MIN
                    185: *     ..
                    186: *     .. Executable Statements ..
                    187: *
                    188: *     Test the input parameters.
                    189: *
                    190:       WANTZ = LSAME( JOBZ, 'V' )
                    191:       UPPER = LSAME( UPLO, 'U' )
                    192:       ALLEIG = LSAME( RANGE, 'A' )
                    193:       VALEIG = LSAME( RANGE, 'V' )
                    194:       INDEIG = LSAME( RANGE, 'I' )
                    195: *
                    196:       INFO = 0
                    197:       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
                    198:          INFO = -1
                    199:       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    200:          INFO = -2
                    201:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    202:          INFO = -3
                    203:       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
                    204:          INFO = -4
                    205:       ELSE IF( N.LT.0 ) THEN
                    206:          INFO = -5
                    207:       ELSE 
                    208:          IF( VALEIG ) THEN
                    209:             IF( N.GT.0 .AND. VU.LE.VL ) THEN
                    210:                INFO = -9
                    211:             END IF
                    212:          ELSE IF( INDEIG ) THEN
                    213:             IF( IL.LT.1 ) THEN
                    214:                INFO = -10
                    215:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    216:                INFO = -11
                    217:             END IF
                    218:          END IF
                    219:       END IF
                    220:       IF( INFO.EQ.0 ) THEN
                    221:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    222:             INFO = -16
                    223:          END IF
                    224:       END IF
                    225: *
                    226:       IF( INFO.NE.0 ) THEN
                    227:          CALL XERBLA( 'ZHPGVX', -INFO )
                    228:          RETURN
                    229:       END IF
                    230: *
                    231: *     Quick return if possible
                    232: *
                    233:       IF( N.EQ.0 )
                    234:      $   RETURN
                    235: *
                    236: *     Form a Cholesky factorization of B.
                    237: *
                    238:       CALL ZPPTRF( UPLO, N, BP, INFO )
                    239:       IF( INFO.NE.0 ) THEN
                    240:          INFO = N + INFO
                    241:          RETURN
                    242:       END IF
                    243: *
                    244: *     Transform problem to standard eigenvalue problem and solve.
                    245: *
                    246:       CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
                    247:       CALL ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M,
                    248:      $             W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
                    249: *
                    250:       IF( WANTZ ) THEN
                    251: *
                    252: *        Backtransform eigenvectors to the original problem.
                    253: *
                    254:          IF( INFO.GT.0 )
                    255:      $      M = INFO - 1
                    256:          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
                    257: *
                    258: *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
                    259: *           backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
                    260: *
                    261:             IF( UPPER ) THEN
                    262:                TRANS = 'N'
                    263:             ELSE
                    264:                TRANS = 'C'
                    265:             END IF
                    266: *
                    267:             DO 10 J = 1, M
                    268:                CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    269:      $                     1 )
                    270:    10       CONTINUE
                    271: *
                    272:          ELSE IF( ITYPE.EQ.3 ) THEN
                    273: *
                    274: *           For B*A*x=(lambda)*x;
                    275: *           backtransform eigenvectors: x = L*y or U'*y
                    276: *
                    277:             IF( UPPER ) THEN
                    278:                TRANS = 'C'
                    279:             ELSE
                    280:                TRANS = 'N'
                    281:             END IF
                    282: *
                    283:             DO 20 J = 1, M
                    284:                CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
                    285:      $                     1 )
                    286:    20       CONTINUE
                    287:          END IF
                    288:       END IF
                    289: *
                    290:       RETURN
                    291: *
                    292: *     End of ZHPGVX
                    293: *
                    294:       END

CVSweb interface <joel.bertrand@systella.fr>