File:  [local] / rpl / lapack / lapack / zhetrf_aa.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:06:49 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_27, rpl-4_1_26, HEAD
Cohérence.

    1: *> \brief \b ZHETRF_AA
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZHETRF_AA + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrf_aa.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrf_aa.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrf_aa.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER    UPLO
   25: *       INTEGER      N, LDA, LWORK, INFO
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER      IPIV( * )
   29: *       COMPLEX*16   A( LDA, * ), WORK( * )
   30: *       ..
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZHETRF_AA computes the factorization of a complex hermitian matrix A
   38: *> using the Aasen's algorithm.  The form of the factorization is
   39: *>
   40: *>    A = U*T*U**H  or  A = L*T*L**H
   41: *>
   42: *> where U (or L) is a product of permutation and unit upper (lower)
   43: *> triangular matrices, and T is a hermitian tridiagonal matrix.
   44: *>
   45: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  Upper triangle of A is stored;
   55: *>          = 'L':  Lower triangle of A is stored.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in,out] A
   65: *> \verbatim
   66: *>          A is COMPLEX*16 array, dimension (LDA,N)
   67: *>          On entry, the hermitian matrix A.  If UPLO = 'U', the leading
   68: *>          N-by-N upper triangular part of A contains the upper
   69: *>          triangular part of the matrix A, and the strictly lower
   70: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   71: *>          leading N-by-N lower triangular part of A contains the lower
   72: *>          triangular part of the matrix A, and the strictly upper
   73: *>          triangular part of A is not referenced.
   74: *>
   75: *>          On exit, the tridiagonal matrix is stored in the diagonals
   76: *>          and the subdiagonals of A just below (or above) the diagonals,
   77: *>          and L is stored below (or above) the subdiaonals, when UPLO
   78: *>          is 'L' (or 'U').
   79: *> \endverbatim
   80: *>
   81: *> \param[in] LDA
   82: *> \verbatim
   83: *>          LDA is INTEGER
   84: *>          The leading dimension of the array A.  LDA >= max(1,N).
   85: *> \endverbatim
   86: *>
   87: *> \param[out] IPIV
   88: *> \verbatim
   89: *>          IPIV is INTEGER array, dimension (N)
   90: *>          On exit, it contains the details of the interchanges, i.e.,
   91: *>          the row and column k of A were interchanged with the
   92: *>          row and column IPIV(k).
   93: *> \endverbatim
   94: *>
   95: *> \param[out] WORK
   96: *> \verbatim
   97: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
   98: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LWORK
  102: *> \verbatim
  103: *>          LWORK is INTEGER
  104: *>          The length of WORK. LWORK >= MAX(1,2*N). For optimum performance
  105: *>          LWORK >= N*(1+NB), where NB is the optimal blocksize.
  106: *>
  107: *>          If LWORK = -1, then a workspace query is assumed; the routine
  108: *>          only calculates the optimal size of the WORK array, returns
  109: *>          this value as the first entry of the WORK array, and no error
  110: *>          message related to LWORK is issued by XERBLA.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] INFO
  114: *> \verbatim
  115: *>          INFO is INTEGER
  116: *>          = 0:  successful exit
  117: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  118: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
  119: *>                has been completed, but the block diagonal matrix D is
  120: *>                exactly singular, and division by zero will occur if it
  121: *>                is used to solve a system of equations.
  122: *> \endverbatim
  123: *
  124: *  Authors:
  125: *  ========
  126: *
  127: *> \author Univ. of Tennessee
  128: *> \author Univ. of California Berkeley
  129: *> \author Univ. of Colorado Denver
  130: *> \author NAG Ltd.
  131: *
  132: *> \date December 2016
  133: *
  134: *> \ingroup complex16HEcomputational
  135: *
  136: *  =====================================================================
  137:       SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
  138: *
  139: *  -- LAPACK computational routine (version 3.7.0) --
  140: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  141: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142: *     December 2016
  143: *
  144:       IMPLICIT NONE
  145: *
  146: *     .. Scalar Arguments ..
  147:       CHARACTER    UPLO
  148:       INTEGER      N, LDA, LWORK, INFO
  149: *     ..
  150: *     .. Array Arguments ..
  151:       INTEGER      IPIV( * )
  152:       COMPLEX*16   A( LDA, * ), WORK( * )
  153: *     ..
  154: *
  155: *  =====================================================================
  156: *     .. Parameters ..
  157:       COMPLEX*16   ZERO, ONE
  158:       PARAMETER    ( ZERO = (0.0D+0, 0.0D+0), ONE = (1.0D+0, 0.0D+0) )
  159: *
  160: *     .. Local Scalars ..
  161:       LOGICAL      LQUERY, UPPER
  162:       INTEGER      J, LWKOPT, IINFO
  163:       INTEGER      NB, MJ, NJ, K1, K2, J1, J2, J3, JB
  164:       COMPLEX*16   ALPHA
  165: *     ..
  166: *     .. External Functions ..
  167:       LOGICAL      LSAME
  168:       INTEGER      ILAENV
  169:       EXTERNAL     LSAME, ILAENV
  170: *     ..
  171: *     .. External Subroutines ..
  172:       EXTERNAL     XERBLA
  173: *     ..
  174: *     .. Intrinsic Functions ..
  175:       INTRINSIC    DBLE, DCONJG, MAX
  176: *     ..
  177: *     .. Executable Statements ..
  178: *
  179: *     Determine the block size
  180: *
  181:       NB = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 )
  182: *
  183: *     Test the input parameters.
  184: *
  185:       INFO = 0
  186:       UPPER = LSAME( UPLO, 'U' )
  187:       LQUERY = ( LWORK.EQ.-1 )
  188:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  189:          INFO = -1
  190:       ELSE IF( N.LT.0 ) THEN
  191:          INFO = -2
  192:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  193:          INFO = -4
  194:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
  195:          INFO = -7
  196:       END IF
  197: *
  198:       IF( INFO.EQ.0 ) THEN
  199:          LWKOPT = (NB+1)*N
  200:          WORK( 1 ) = LWKOPT
  201:       END IF
  202: *
  203:       IF( INFO.NE.0 ) THEN
  204:          CALL XERBLA( 'ZHETRF_AA', -INFO )
  205:          RETURN
  206:       ELSE IF( LQUERY ) THEN
  207:          RETURN
  208:       END IF
  209: *
  210: *     Quick return
  211: *
  212:       IF ( N.EQ.0 ) THEN
  213:           RETURN
  214:       ENDIF
  215:       IPIV( 1 ) = 1
  216:       IF ( N.EQ.1 ) THEN
  217:          A( 1, 1 ) = DBLE( A( 1, 1 ) )
  218:          IF ( A( 1, 1 ).EQ.ZERO ) THEN
  219:             INFO = 1
  220:          END IF
  221:          RETURN
  222:       END IF
  223: *
  224: *     Adjubst block size based on the workspace size
  225: *
  226:       IF( LWORK.LT.((1+NB)*N) ) THEN
  227:          NB = ( LWORK-N ) / N
  228:       END IF
  229: *
  230:       IF( UPPER ) THEN
  231: *
  232: *        .....................................................
  233: *        Factorize A as L*D*L**H using the upper triangle of A
  234: *        .....................................................
  235: *
  236: *        copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
  237: *
  238:          CALL ZCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
  239: *
  240: *        J is the main loop index, increasing from 1 to N in steps of
  241: *        JB, where JB is the number of columns factorized by ZLAHEF;
  242: *        JB is either NB, or N-J+1 for the last block
  243: *
  244:          J = 0
  245:  10      CONTINUE
  246:          IF( J.GE.N )
  247:      $      GO TO 20
  248: *
  249: *        each step of the main loop
  250: *         J is the last column of the previous panel
  251: *         J1 is the first column of the current panel
  252: *         K1 identifies if the previous column of the panel has been
  253: *          explicitly stored, e.g., K1=1 for the first panel, and
  254: *          K1=0 for the rest
  255: *
  256:          J1 = J + 1
  257:          JB = MIN( N-J1+1, NB )
  258:          K1 = MAX(1, J)-J
  259: *
  260: *        Panel factorization
  261: *
  262:          CALL ZLAHEF_AA( UPLO, 2-K1, N-J, JB,
  263:      $                      A( MAX(1, J), J+1 ), LDA,
  264:      $                      IPIV( J+1 ), WORK, N, WORK( N*NB+1 ),
  265:      $                      IINFO )
  266:          IF( (IINFO.GT.0) .AND. (INFO.EQ.0) ) THEN
  267:              INFO = IINFO+J
  268:          ENDIF
  269: *
  270: *        Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  271: *
  272:          DO J2 = J+2, MIN(N, J+JB+1)
  273:             IPIV( J2 ) = IPIV( J2 ) + J
  274:             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  275:                CALL ZSWAP( J1-K1-2, A( 1, J2 ), 1,
  276:      $                              A( 1, IPIV(J2) ), 1 )
  277:             END IF
  278:          END DO
  279:          J = J + JB
  280: *
  281: *        Trailing submatrix update, where
  282: *         the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
  283: *         WORK stores the current block of the auxiriarly matrix H
  284: *
  285:          IF( J.LT.N ) THEN
  286: *
  287: *          if the first panel and JB=1 (NB=1), then nothing to do
  288: *
  289:             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  290: *
  291: *              Merge rank-1 update with BLAS-3 update
  292: *
  293:                ALPHA = DCONJG( A( J, J+1 ) )
  294:                A( J, J+1 ) = ONE
  295:                CALL ZCOPY( N-J, A( J-1, J+1 ), LDA,
  296:      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
  297:                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  298: *
  299: *              K1 identifies if the previous column of the panel has been
  300: *               explicitly stored, e.g., K1=0 and K2=1 for the first panel,
  301: *               and K1=1 and K2=0 for the rest
  302: *
  303:                IF( J1.GT.1 ) THEN
  304: *
  305: *                 Not first panel
  306: *
  307:                   K2 = 1
  308:                ELSE
  309: *
  310: *                 First panel
  311: *
  312:                   K2 = 0
  313: *
  314: *                 First update skips the first column
  315: *
  316:                   JB = JB - 1
  317:                END IF
  318: *
  319:                DO J2 = J+1, N, NB
  320:                   NJ = MIN( NB, N-J2+1 )
  321: *
  322: *                 Update (J2, J2) diagonal block with ZGEMV
  323: *
  324:                   J3 = J2
  325:                   DO MJ = NJ-1, 1, -1
  326:                      CALL ZGEMM( 'Conjugate transpose', 'Transpose',
  327:      $                            1, MJ, JB+1,
  328:      $                           -ONE, A( J1-K2, J3 ), LDA,
  329:      $                                 WORK( (J3-J1+1)+K1*N ), N,
  330:      $                            ONE, A( J3, J3 ), LDA )
  331:                      J3 = J3 + 1
  332:                   END DO
  333: *
  334: *                 Update off-diagonal block of J2-th block row with ZGEMM
  335: *
  336:                   CALL ZGEMM( 'Conjugate transpose', 'Transpose',
  337:      $                        NJ, N-J3+1, JB+1,
  338:      $                       -ONE, A( J1-K2, J2 ), LDA,
  339:      $                             WORK( (J3-J1+1)+K1*N ), N,
  340:      $                        ONE, A( J2, J3 ), LDA )
  341:                END DO
  342: *
  343: *              Recover T( J, J+1 )
  344: *
  345:                A( J, J+1 ) = DCONJG( ALPHA )
  346:             END IF
  347: *
  348: *           WORK(J+1, 1) stores H(J+1, 1)
  349: *
  350:             CALL ZCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
  351:          END IF
  352:          GO TO 10
  353:       ELSE
  354: *
  355: *        .....................................................
  356: *        Factorize A as L*D*L**H using the lower triangle of A
  357: *        .....................................................
  358: *
  359: *        copy first column A(1:N, 1) into H(1:N, 1)
  360: *         (stored in WORK(1:N))
  361: *
  362:          CALL ZCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
  363: *
  364: *        J is the main loop index, increasing from 1 to N in steps of
  365: *        JB, where JB is the number of columns factorized by ZLAHEF;
  366: *        JB is either NB, or N-J+1 for the last block
  367: *
  368:          J = 0
  369:  11      CONTINUE
  370:          IF( J.GE.N )
  371:      $      GO TO 20
  372: *
  373: *        each step of the main loop
  374: *         J is the last column of the previous panel
  375: *         J1 is the first column of the current panel
  376: *         K1 identifies if the previous column of the panel has been
  377: *          explicitly stored, e.g., K1=1 for the first panel, and
  378: *          K1=0 for the rest
  379: *
  380:          J1 = J+1
  381:          JB = MIN( N-J1+1, NB )
  382:          K1 = MAX(1, J)-J
  383: *
  384: *        Panel factorization
  385: *
  386:          CALL ZLAHEF_AA( UPLO, 2-K1, N-J, JB,
  387:      $                      A( J+1, MAX(1, J) ), LDA,
  388:      $                      IPIV( J+1 ), WORK, N, WORK( N*NB+1 ), IINFO)
  389:          IF( (IINFO.GT.0) .AND. (INFO.EQ.0) ) THEN
  390:             INFO = IINFO+J
  391:          ENDIF
  392: *
  393: *        Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  394: *
  395:          DO J2 = J+2, MIN(N, J+JB+1)
  396:             IPIV( J2 ) = IPIV( J2 ) + J
  397:             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  398:                CALL ZSWAP( J1-K1-2, A( J2, 1 ), LDA,
  399:      $                              A( IPIV(J2), 1 ), LDA )
  400:             END IF
  401:          END DO
  402:          J = J + JB
  403: *
  404: *        Trailing submatrix update, where
  405: *          A(J2+1, J1-1) stores L(J2+1, J1) and
  406: *          WORK(J2+1, 1) stores H(J2+1, 1)
  407: *
  408:          IF( J.LT.N ) THEN
  409: *
  410: *          if the first panel and JB=1 (NB=1), then nothing to do
  411: *
  412:             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  413: *
  414: *              Merge rank-1 update with BLAS-3 update
  415: *
  416:                ALPHA = DCONJG( A( J+1, J ) )
  417:                A( J+1, J ) = ONE
  418:                CALL ZCOPY( N-J, A( J+1, J-1 ), 1,
  419:      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
  420:                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  421: *
  422: *              K1 identifies if the previous column of the panel has been
  423: *               explicitly stored, e.g., K1=0 and K2=1 for the first panel,
  424: *               and K1=1 and K2=0 for the rest
  425: *
  426:                IF( J1.GT.1 ) THEN
  427: *
  428: *                 Not first panel
  429: *
  430:                   K2 = 1
  431:                ELSE
  432: *
  433: *                 First panel
  434: *
  435:                   K2 = 0
  436: *
  437: *                 First update skips the first column
  438: *
  439:                   JB = JB - 1
  440:                END IF
  441: *
  442:                DO J2 = J+1, N, NB
  443:                   NJ = MIN( NB, N-J2+1 )
  444: *
  445: *                 Update (J2, J2) diagonal block with ZGEMV
  446: *
  447:                   J3 = J2
  448:                   DO MJ = NJ-1, 1, -1
  449:                      CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  450:      $                           MJ, 1, JB+1,
  451:      $                          -ONE, WORK( (J3-J1+1)+K1*N ), N,
  452:      $                                A( J3, J1-K2 ), LDA,
  453:      $                           ONE, A( J3, J3 ), LDA )
  454:                      J3 = J3 + 1
  455:                   END DO
  456: *
  457: *                 Update off-diagonal block of J2-th block column with ZGEMM
  458: *
  459:                   CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  460:      $                        N-J3+1, NJ, JB+1,
  461:      $                       -ONE, WORK( (J3-J1+1)+K1*N ), N,
  462:      $                             A( J2, J1-K2 ), LDA,
  463:      $                        ONE, A( J3, J2 ), LDA )
  464:                END DO
  465: *
  466: *              Recover T( J+1, J )
  467: *
  468:                A( J+1, J ) = DCONJG( ALPHA )
  469:             END IF
  470: *
  471: *           WORK(J+1, 1) stores H(J+1, 1)
  472: *
  473:             CALL ZCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
  474:          END IF
  475:          GO TO 11
  476:       END IF
  477: *
  478:    20 CONTINUE
  479:       RETURN
  480: *
  481: *     End of ZHETRF_AA
  482: *
  483:       END

CVSweb interface <joel.bertrand@systella.fr>