Annotation of rpl/lapack/lapack/zhetrf_aa.f, revision 1.2

1.1       bertrand    1: *> \brief \b ZHETRF_AA
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZHETRF_AA + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrf_aa.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrf_aa.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrf_aa.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
                     22: *
                     23: *       .. Scalar Arguments ..
                     24: *       CHARACTER    UPLO
                     25: *       INTEGER      N, LDA, LWORK, INFO
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER      IPIV( * )
                     29: *       COMPLEX*16   A( LDA, * ), WORK( * )
                     30: *       ..
                     31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> ZHETRF_AA computes the factorization of a complex hermitian matrix A
                     38: *> using the Aasen's algorithm.  The form of the factorization is
                     39: *>
                     40: *>    A = U*T*U**H  or  A = L*T*L**H
                     41: *>
                     42: *> where U (or L) is a product of permutation and unit upper (lower)
                     43: *> triangular matrices, and T is a hermitian tridiagonal matrix.
                     44: *>
                     45: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
                     46: *> \endverbatim
                     47: *
                     48: *  Arguments:
                     49: *  ==========
                     50: *
                     51: *> \param[in] UPLO
                     52: *> \verbatim
                     53: *>          UPLO is CHARACTER*1
                     54: *>          = 'U':  Upper triangle of A is stored;
                     55: *>          = 'L':  Lower triangle of A is stored.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] N
                     59: *> \verbatim
                     60: *>          N is INTEGER
                     61: *>          The order of the matrix A.  N >= 0.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in,out] A
                     65: *> \verbatim
                     66: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     67: *>          On entry, the hermitian matrix A.  If UPLO = 'U', the leading
                     68: *>          N-by-N upper triangular part of A contains the upper
                     69: *>          triangular part of the matrix A, and the strictly lower
                     70: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                     71: *>          leading N-by-N lower triangular part of A contains the lower
                     72: *>          triangular part of the matrix A, and the strictly upper
                     73: *>          triangular part of A is not referenced.
                     74: *>
                     75: *>          On exit, the tridiagonal matrix is stored in the diagonals
                     76: *>          and the subdiagonals of A just below (or above) the diagonals,
                     77: *>          and L is stored below (or above) the subdiaonals, when UPLO
                     78: *>          is 'L' (or 'U').
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] LDA
                     82: *> \verbatim
                     83: *>          LDA is INTEGER
                     84: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[out] IPIV
                     88: *> \verbatim
                     89: *>          IPIV is INTEGER array, dimension (N)
                     90: *>          On exit, it contains the details of the interchanges, i.e.,
                     91: *>          the row and column k of A were interchanged with the
                     92: *>          row and column IPIV(k).
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[out] WORK
                     96: *> \verbatim
                     97: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     98: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] LWORK
                    102: *> \verbatim
                    103: *>          LWORK is INTEGER
                    104: *>          The length of WORK. LWORK >= MAX(1,2*N). For optimum performance
                    105: *>          LWORK >= N*(1+NB), where NB is the optimal blocksize.
                    106: *>
                    107: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    108: *>          only calculates the optimal size of the WORK array, returns
                    109: *>          this value as the first entry of the WORK array, and no error
                    110: *>          message related to LWORK is issued by XERBLA.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[out] INFO
                    114: *> \verbatim
                    115: *>          INFO is INTEGER
                    116: *>          = 0:  successful exit
                    117: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    118: *>          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
                    119: *>                has been completed, but the block diagonal matrix D is
                    120: *>                exactly singular, and division by zero will occur if it
                    121: *>                is used to solve a system of equations.
                    122: *> \endverbatim
                    123: *
                    124: *  Authors:
                    125: *  ========
                    126: *
                    127: *> \author Univ. of Tennessee
                    128: *> \author Univ. of California Berkeley
                    129: *> \author Univ. of Colorado Denver
                    130: *> \author NAG Ltd.
                    131: *
                    132: *> \date December 2016
                    133: *
                    134: *> \ingroup complex16HEcomputational
                    135: *
                    136: *  =====================================================================
                    137:       SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
                    138: *
                    139: *  -- LAPACK computational routine (version 3.7.0) --
                    140: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    141: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    142: *     December 2016
                    143: *
                    144:       IMPLICIT NONE
                    145: *
                    146: *     .. Scalar Arguments ..
                    147:       CHARACTER    UPLO
                    148:       INTEGER      N, LDA, LWORK, INFO
                    149: *     ..
                    150: *     .. Array Arguments ..
                    151:       INTEGER      IPIV( * )
                    152:       COMPLEX*16   A( LDA, * ), WORK( * )
                    153: *     ..
                    154: *
                    155: *  =====================================================================
                    156: *     .. Parameters ..
                    157:       COMPLEX*16   ZERO, ONE
                    158:       PARAMETER    ( ZERO = (0.0D+0, 0.0D+0), ONE = (1.0D+0, 0.0D+0) )
                    159: *
                    160: *     .. Local Scalars ..
                    161:       LOGICAL      LQUERY, UPPER
                    162:       INTEGER      J, LWKOPT, IINFO
                    163:       INTEGER      NB, MJ, NJ, K1, K2, J1, J2, J3, JB
                    164:       COMPLEX*16   ALPHA
                    165: *     ..
                    166: *     .. External Functions ..
                    167:       LOGICAL      LSAME
                    168:       INTEGER      ILAENV
                    169:       EXTERNAL     LSAME, ILAENV
                    170: *     ..
                    171: *     .. External Subroutines ..
                    172:       EXTERNAL     XERBLA
                    173: *     ..
                    174: *     .. Intrinsic Functions ..
                    175:       INTRINSIC    DBLE, DCONJG, MAX
                    176: *     ..
                    177: *     .. Executable Statements ..
                    178: *
                    179: *     Determine the block size
                    180: *
                    181:       NB = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 )
                    182: *
                    183: *     Test the input parameters.
                    184: *
                    185:       INFO = 0
                    186:       UPPER = LSAME( UPLO, 'U' )
                    187:       LQUERY = ( LWORK.EQ.-1 )
                    188:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    189:          INFO = -1
                    190:       ELSE IF( N.LT.0 ) THEN
                    191:          INFO = -2
                    192:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    193:          INFO = -4
                    194:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
                    195:          INFO = -7
                    196:       END IF
                    197: *
                    198:       IF( INFO.EQ.0 ) THEN
                    199:          LWKOPT = (NB+1)*N
                    200:          WORK( 1 ) = LWKOPT
                    201:       END IF
                    202: *
                    203:       IF( INFO.NE.0 ) THEN
                    204:          CALL XERBLA( 'ZHETRF_AA', -INFO )
                    205:          RETURN
                    206:       ELSE IF( LQUERY ) THEN
                    207:          RETURN
                    208:       END IF
                    209: *
                    210: *     Quick return
                    211: *
                    212:       IF ( N.EQ.0 ) THEN
                    213:           RETURN
                    214:       ENDIF
                    215:       IPIV( 1 ) = 1
                    216:       IF ( N.EQ.1 ) THEN
                    217:          A( 1, 1 ) = DBLE( A( 1, 1 ) )
                    218:          IF ( A( 1, 1 ).EQ.ZERO ) THEN
                    219:             INFO = 1
                    220:          END IF
                    221:          RETURN
                    222:       END IF
                    223: *
                    224: *     Adjubst block size based on the workspace size
                    225: *
                    226:       IF( LWORK.LT.((1+NB)*N) ) THEN
                    227:          NB = ( LWORK-N ) / N
                    228:       END IF
                    229: *
                    230:       IF( UPPER ) THEN
                    231: *
                    232: *        .....................................................
                    233: *        Factorize A as L*D*L**H using the upper triangle of A
                    234: *        .....................................................
                    235: *
                    236: *        copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
                    237: *
                    238:          CALL ZCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
                    239: *
                    240: *        J is the main loop index, increasing from 1 to N in steps of
                    241: *        JB, where JB is the number of columns factorized by ZLAHEF;
                    242: *        JB is either NB, or N-J+1 for the last block
                    243: *
                    244:          J = 0
                    245:  10      CONTINUE
                    246:          IF( J.GE.N )
                    247:      $      GO TO 20
                    248: *
                    249: *        each step of the main loop
                    250: *         J is the last column of the previous panel
                    251: *         J1 is the first column of the current panel
                    252: *         K1 identifies if the previous column of the panel has been
                    253: *          explicitly stored, e.g., K1=1 for the first panel, and
                    254: *          K1=0 for the rest
                    255: *
                    256:          J1 = J + 1
                    257:          JB = MIN( N-J1+1, NB )
                    258:          K1 = MAX(1, J)-J
                    259: *
                    260: *        Panel factorization
                    261: *
                    262:          CALL ZLAHEF_AA( UPLO, 2-K1, N-J, JB,
                    263:      $                      A( MAX(1, J), J+1 ), LDA,
                    264:      $                      IPIV( J+1 ), WORK, N, WORK( N*NB+1 ),
                    265:      $                      IINFO )
                    266:          IF( (IINFO.GT.0) .AND. (INFO.EQ.0) ) THEN
                    267:              INFO = IINFO+J
                    268:          ENDIF
                    269: *
                    270: *        Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
                    271: *
                    272:          DO J2 = J+2, MIN(N, J+JB+1)
                    273:             IPIV( J2 ) = IPIV( J2 ) + J
                    274:             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
                    275:                CALL ZSWAP( J1-K1-2, A( 1, J2 ), 1,
                    276:      $                              A( 1, IPIV(J2) ), 1 )
                    277:             END IF
                    278:          END DO
                    279:          J = J + JB
                    280: *
                    281: *        Trailing submatrix update, where
                    282: *         the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
                    283: *         WORK stores the current block of the auxiriarly matrix H
                    284: *
                    285:          IF( J.LT.N ) THEN
                    286: *
                    287: *          if the first panel and JB=1 (NB=1), then nothing to do
                    288: *
                    289:             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
                    290: *
                    291: *              Merge rank-1 update with BLAS-3 update
                    292: *
                    293:                ALPHA = DCONJG( A( J, J+1 ) )
                    294:                A( J, J+1 ) = ONE
                    295:                CALL ZCOPY( N-J, A( J-1, J+1 ), LDA,
                    296:      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
                    297:                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
                    298: *
                    299: *              K1 identifies if the previous column of the panel has been
                    300: *               explicitly stored, e.g., K1=0 and K2=1 for the first panel,
                    301: *               and K1=1 and K2=0 for the rest
                    302: *
                    303:                IF( J1.GT.1 ) THEN
                    304: *
                    305: *                 Not first panel
                    306: *
                    307:                   K2 = 1
                    308:                ELSE
                    309: *
                    310: *                 First panel
                    311: *
                    312:                   K2 = 0
                    313: *
                    314: *                 First update skips the first column
                    315: *
                    316:                   JB = JB - 1
                    317:                END IF
                    318: *
                    319:                DO J2 = J+1, N, NB
                    320:                   NJ = MIN( NB, N-J2+1 )
                    321: *
                    322: *                 Update (J2, J2) diagonal block with ZGEMV
                    323: *
                    324:                   J3 = J2
                    325:                   DO MJ = NJ-1, 1, -1
                    326:                      CALL ZGEMM( 'Conjugate transpose', 'Transpose',
                    327:      $                            1, MJ, JB+1,
                    328:      $                           -ONE, A( J1-K2, J3 ), LDA,
                    329:      $                                 WORK( (J3-J1+1)+K1*N ), N,
                    330:      $                            ONE, A( J3, J3 ), LDA )
                    331:                      J3 = J3 + 1
                    332:                   END DO
                    333: *
                    334: *                 Update off-diagonal block of J2-th block row with ZGEMM
                    335: *
                    336:                   CALL ZGEMM( 'Conjugate transpose', 'Transpose',
                    337:      $                        NJ, N-J3+1, JB+1,
                    338:      $                       -ONE, A( J1-K2, J2 ), LDA,
                    339:      $                             WORK( (J3-J1+1)+K1*N ), N,
                    340:      $                        ONE, A( J2, J3 ), LDA )
                    341:                END DO
                    342: *
                    343: *              Recover T( J, J+1 )
                    344: *
                    345:                A( J, J+1 ) = DCONJG( ALPHA )
                    346:             END IF
                    347: *
                    348: *           WORK(J+1, 1) stores H(J+1, 1)
                    349: *
                    350:             CALL ZCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
                    351:          END IF
                    352:          GO TO 10
                    353:       ELSE
                    354: *
                    355: *        .....................................................
                    356: *        Factorize A as L*D*L**H using the lower triangle of A
                    357: *        .....................................................
                    358: *
                    359: *        copy first column A(1:N, 1) into H(1:N, 1)
                    360: *         (stored in WORK(1:N))
                    361: *
                    362:          CALL ZCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
                    363: *
                    364: *        J is the main loop index, increasing from 1 to N in steps of
                    365: *        JB, where JB is the number of columns factorized by ZLAHEF;
                    366: *        JB is either NB, or N-J+1 for the last block
                    367: *
                    368:          J = 0
                    369:  11      CONTINUE
                    370:          IF( J.GE.N )
                    371:      $      GO TO 20
                    372: *
                    373: *        each step of the main loop
                    374: *         J is the last column of the previous panel
                    375: *         J1 is the first column of the current panel
                    376: *         K1 identifies if the previous column of the panel has been
                    377: *          explicitly stored, e.g., K1=1 for the first panel, and
                    378: *          K1=0 for the rest
                    379: *
                    380:          J1 = J+1
                    381:          JB = MIN( N-J1+1, NB )
                    382:          K1 = MAX(1, J)-J
                    383: *
                    384: *        Panel factorization
                    385: *
                    386:          CALL ZLAHEF_AA( UPLO, 2-K1, N-J, JB,
                    387:      $                      A( J+1, MAX(1, J) ), LDA,
                    388:      $                      IPIV( J+1 ), WORK, N, WORK( N*NB+1 ), IINFO)
                    389:          IF( (IINFO.GT.0) .AND. (INFO.EQ.0) ) THEN
                    390:             INFO = IINFO+J
                    391:          ENDIF
                    392: *
                    393: *        Ajust IPIV and apply it back (J-th step picks (J+1)-th pivot)
                    394: *
                    395:          DO J2 = J+2, MIN(N, J+JB+1)
                    396:             IPIV( J2 ) = IPIV( J2 ) + J
                    397:             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
                    398:                CALL ZSWAP( J1-K1-2, A( J2, 1 ), LDA,
                    399:      $                              A( IPIV(J2), 1 ), LDA )
                    400:             END IF
                    401:          END DO
                    402:          J = J + JB
                    403: *
                    404: *        Trailing submatrix update, where
                    405: *          A(J2+1, J1-1) stores L(J2+1, J1) and
                    406: *          WORK(J2+1, 1) stores H(J2+1, 1)
                    407: *
                    408:          IF( J.LT.N ) THEN
                    409: *
                    410: *          if the first panel and JB=1 (NB=1), then nothing to do
                    411: *
                    412:             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
                    413: *
                    414: *              Merge rank-1 update with BLAS-3 update
                    415: *
                    416:                ALPHA = DCONJG( A( J+1, J ) )
                    417:                A( J+1, J ) = ONE
                    418:                CALL ZCOPY( N-J, A( J+1, J-1 ), 1,
                    419:      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
                    420:                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
                    421: *
                    422: *              K1 identifies if the previous column of the panel has been
                    423: *               explicitly stored, e.g., K1=0 and K2=1 for the first panel,
                    424: *               and K1=1 and K2=0 for the rest
                    425: *
                    426:                IF( J1.GT.1 ) THEN
                    427: *
                    428: *                 Not first panel
                    429: *
                    430:                   K2 = 1
                    431:                ELSE
                    432: *
                    433: *                 First panel
                    434: *
                    435:                   K2 = 0
                    436: *
                    437: *                 First update skips the first column
                    438: *
                    439:                   JB = JB - 1
                    440:                END IF
                    441: *
                    442:                DO J2 = J+1, N, NB
                    443:                   NJ = MIN( NB, N-J2+1 )
                    444: *
                    445: *                 Update (J2, J2) diagonal block with ZGEMV
                    446: *
                    447:                   J3 = J2
                    448:                   DO MJ = NJ-1, 1, -1
                    449:                      CALL ZGEMM( 'No transpose', 'Conjugate transpose',
                    450:      $                           MJ, 1, JB+1,
                    451:      $                          -ONE, WORK( (J3-J1+1)+K1*N ), N,
                    452:      $                                A( J3, J1-K2 ), LDA,
                    453:      $                           ONE, A( J3, J3 ), LDA )
                    454:                      J3 = J3 + 1
                    455:                   END DO
                    456: *
                    457: *                 Update off-diagonal block of J2-th block column with ZGEMM
                    458: *
                    459:                   CALL ZGEMM( 'No transpose', 'Conjugate transpose',
                    460:      $                        N-J3+1, NJ, JB+1,
                    461:      $                       -ONE, WORK( (J3-J1+1)+K1*N ), N,
                    462:      $                             A( J2, J1-K2 ), LDA,
                    463:      $                        ONE, A( J3, J2 ), LDA )
                    464:                END DO
                    465: *
                    466: *              Recover T( J+1, J )
                    467: *
                    468:                A( J+1, J ) = DCONJG( ALPHA )
                    469:             END IF
                    470: *
                    471: *           WORK(J+1, 1) stores H(J+1, 1)
                    472: *
                    473:             CALL ZCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
                    474:          END IF
                    475:          GO TO 11
                    476:       END IF
                    477: *
                    478:    20 CONTINUE
                    479:       RETURN
                    480: *
                    481: *     End of ZHETRF_AA
                    482: *
                    483:       END

CVSweb interface <joel.bertrand@systella.fr>