File:  [local] / rpl / lapack / lapack / zheevx.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:15 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
    2:      $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
    3:      $                   IWORK, IFAIL, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.3.1) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *  -- April 2011                                                      --
    9: * @precisions normal z -> c
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          JOBZ, RANGE, UPLO
   13:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
   14:       DOUBLE PRECISION   ABSTOL, VL, VU
   15: *     ..
   16: *     .. Array Arguments ..
   17:       INTEGER            IFAIL( * ), IWORK( * )
   18:       DOUBLE PRECISION   RWORK( * ), W( * )
   19:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
   26: *  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
   27: *  be selected by specifying either a range of values or a range of
   28: *  indices for the desired eigenvalues.
   29: *
   30: *  Arguments
   31: *  =========
   32: *
   33: *  JOBZ    (input) CHARACTER*1
   34: *          = 'N':  Compute eigenvalues only;
   35: *          = 'V':  Compute eigenvalues and eigenvectors.
   36: *
   37: *  RANGE   (input) CHARACTER*1
   38: *          = 'A': all eigenvalues will be found.
   39: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
   40: *                 will be found.
   41: *          = 'I': the IL-th through IU-th eigenvalues will be found.
   42: *
   43: *  UPLO    (input) CHARACTER*1
   44: *          = 'U':  Upper triangle of A is stored;
   45: *          = 'L':  Lower triangle of A is stored.
   46: *
   47: *  N       (input) INTEGER
   48: *          The order of the matrix A.  N >= 0.
   49: *
   50: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
   51: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
   52: *          leading N-by-N upper triangular part of A contains the
   53: *          upper triangular part of the matrix A.  If UPLO = 'L',
   54: *          the leading N-by-N lower triangular part of A contains
   55: *          the lower triangular part of the matrix A.
   56: *          On exit, the lower triangle (if UPLO='L') or the upper
   57: *          triangle (if UPLO='U') of A, including the diagonal, is
   58: *          destroyed.
   59: *
   60: *  LDA     (input) INTEGER
   61: *          The leading dimension of the array A.  LDA >= max(1,N).
   62: *
   63: *  VL      (input) DOUBLE PRECISION
   64: *  VU      (input) DOUBLE PRECISION
   65: *          If RANGE='V', the lower and upper bounds of the interval to
   66: *          be searched for eigenvalues. VL < VU.
   67: *          Not referenced if RANGE = 'A' or 'I'.
   68: *
   69: *  IL      (input) INTEGER
   70: *  IU      (input) INTEGER
   71: *          If RANGE='I', the indices (in ascending order) of the
   72: *          smallest and largest eigenvalues to be returned.
   73: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
   74: *          Not referenced if RANGE = 'A' or 'V'.
   75: *
   76: *  ABSTOL  (input) DOUBLE PRECISION
   77: *          The absolute error tolerance for the eigenvalues.
   78: *          An approximate eigenvalue is accepted as converged
   79: *          when it is determined to lie in an interval [a,b]
   80: *          of width less than or equal to
   81: *
   82: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
   83: *
   84: *          where EPS is the machine precision.  If ABSTOL is less than
   85: *          or equal to zero, then  EPS*|T|  will be used in its place,
   86: *          where |T| is the 1-norm of the tridiagonal matrix obtained
   87: *          by reducing A to tridiagonal form.
   88: *
   89: *          Eigenvalues will be computed most accurately when ABSTOL is
   90: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
   91: *          If this routine returns with INFO>0, indicating that some
   92: *          eigenvectors did not converge, try setting ABSTOL to
   93: *          2*DLAMCH('S').
   94: *
   95: *          See "Computing Small Singular Values of Bidiagonal Matrices
   96: *          with Guaranteed High Relative Accuracy," by Demmel and
   97: *          Kahan, LAPACK Working Note #3.
   98: *
   99: *  M       (output) INTEGER
  100: *          The total number of eigenvalues found.  0 <= M <= N.
  101: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  102: *
  103: *  W       (output) DOUBLE PRECISION array, dimension (N)
  104: *          On normal exit, the first M elements contain the selected
  105: *          eigenvalues in ascending order.
  106: *
  107: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
  108: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  109: *          contain the orthonormal eigenvectors of the matrix A
  110: *          corresponding to the selected eigenvalues, with the i-th
  111: *          column of Z holding the eigenvector associated with W(i).
  112: *          If an eigenvector fails to converge, then that column of Z
  113: *          contains the latest approximation to the eigenvector, and the
  114: *          index of the eigenvector is returned in IFAIL.
  115: *          If JOBZ = 'N', then Z is not referenced.
  116: *          Note: the user must ensure that at least max(1,M) columns are
  117: *          supplied in the array Z; if RANGE = 'V', the exact value of M
  118: *          is not known in advance and an upper bound must be used.
  119: *
  120: *  LDZ     (input) INTEGER
  121: *          The leading dimension of the array Z.  LDZ >= 1, and if
  122: *          JOBZ = 'V', LDZ >= max(1,N).
  123: *
  124: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
  125: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  126: *
  127: *  LWORK   (input) INTEGER
  128: *          The length of the array WORK.  LWORK >= 1, when N <= 1;
  129: *          otherwise 2*N.
  130: *          For optimal efficiency, LWORK >= (NB+1)*N,
  131: *          where NB is the max of the blocksize for ZHETRD and for
  132: *          ZUNMTR as returned by ILAENV.
  133: *
  134: *          If LWORK = -1, then a workspace query is assumed; the routine
  135: *          only calculates the optimal size of the WORK array, returns
  136: *          this value as the first entry of the WORK array, and no error
  137: *          message related to LWORK is issued by XERBLA.
  138: *
  139: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
  140: *
  141: *  IWORK   (workspace) INTEGER array, dimension (5*N)
  142: *
  143: *  IFAIL   (output) INTEGER array, dimension (N)
  144: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
  145: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
  146: *          indices of the eigenvectors that failed to converge.
  147: *          If JOBZ = 'N', then IFAIL is not referenced.
  148: *
  149: *  INFO    (output) INTEGER
  150: *          = 0:  successful exit
  151: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  152: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
  153: *                Their indices are stored in array IFAIL.
  154: *
  155: *  =====================================================================
  156: *
  157: *     .. Parameters ..
  158:       DOUBLE PRECISION   ZERO, ONE
  159:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  160:       COMPLEX*16         CONE
  161:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  162: *     ..
  163: *     .. Local Scalars ..
  164:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
  165:      $                   WANTZ
  166:       CHARACTER          ORDER
  167:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  168:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
  169:      $                   ITMP1, J, JJ, LLWORK, LWKMIN, LWKOPT, NB,
  170:      $                   NSPLIT
  171:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  172:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
  173: *     ..
  174: *     .. External Functions ..
  175:       LOGICAL            LSAME
  176:       INTEGER            ILAENV
  177:       DOUBLE PRECISION   DLAMCH, ZLANHE
  178:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
  179: *     ..
  180: *     .. External Subroutines ..
  181:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
  182:      $                   ZHETRD, ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR,
  183:      $                   ZUNMTR
  184: *     ..
  185: *     .. Intrinsic Functions ..
  186:       INTRINSIC          DBLE, MAX, MIN, SQRT
  187: *     ..
  188: *     .. Executable Statements ..
  189: *
  190: *     Test the input parameters.
  191: *
  192:       LOWER = LSAME( UPLO, 'L' )
  193:       WANTZ = LSAME( JOBZ, 'V' )
  194:       ALLEIG = LSAME( RANGE, 'A' )
  195:       VALEIG = LSAME( RANGE, 'V' )
  196:       INDEIG = LSAME( RANGE, 'I' )
  197:       LQUERY = ( LWORK.EQ.-1 )
  198: *
  199:       INFO = 0
  200:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  201:          INFO = -1
  202:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  203:          INFO = -2
  204:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  205:          INFO = -3
  206:       ELSE IF( N.LT.0 ) THEN
  207:          INFO = -4
  208:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  209:          INFO = -6
  210:       ELSE
  211:          IF( VALEIG ) THEN
  212:             IF( N.GT.0 .AND. VU.LE.VL )
  213:      $         INFO = -8
  214:          ELSE IF( INDEIG ) THEN
  215:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  216:                INFO = -9
  217:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  218:                INFO = -10
  219:             END IF
  220:          END IF
  221:       END IF
  222:       IF( INFO.EQ.0 ) THEN
  223:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  224:             INFO = -15
  225:          END IF
  226:       END IF
  227: *
  228:       IF( INFO.EQ.0 ) THEN
  229:          IF( N.LE.1 ) THEN
  230:             LWKMIN = 1
  231:             WORK( 1 ) = LWKMIN
  232:          ELSE
  233:             LWKMIN = 2*N
  234:             NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
  235:             NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
  236:             LWKOPT = MAX( 1, ( NB + 1 )*N )
  237:             WORK( 1 ) = LWKOPT
  238:          END IF
  239: *
  240:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
  241:      $      INFO = -17
  242:       END IF
  243: *
  244:       IF( INFO.NE.0 ) THEN
  245:          CALL XERBLA( 'ZHEEVX', -INFO )
  246:          RETURN
  247:       ELSE IF( LQUERY ) THEN
  248:          RETURN
  249:       END IF
  250: *
  251: *     Quick return if possible
  252: *
  253:       M = 0
  254:       IF( N.EQ.0 ) THEN
  255:          RETURN
  256:       END IF
  257: *
  258:       IF( N.EQ.1 ) THEN
  259:          IF( ALLEIG .OR. INDEIG ) THEN
  260:             M = 1
  261:             W( 1 ) = A( 1, 1 )
  262:          ELSE IF( VALEIG ) THEN
  263:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
  264:      $           THEN
  265:                M = 1
  266:                W( 1 ) = A( 1, 1 )
  267:             END IF
  268:          END IF
  269:          IF( WANTZ )
  270:      $      Z( 1, 1 ) = CONE
  271:          RETURN
  272:       END IF
  273: *
  274: *     Get machine constants.
  275: *
  276:       SAFMIN = DLAMCH( 'Safe minimum' )
  277:       EPS = DLAMCH( 'Precision' )
  278:       SMLNUM = SAFMIN / EPS
  279:       BIGNUM = ONE / SMLNUM
  280:       RMIN = SQRT( SMLNUM )
  281:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  282: *
  283: *     Scale matrix to allowable range, if necessary.
  284: *
  285:       ISCALE = 0
  286:       ABSTLL = ABSTOL
  287:       IF( VALEIG ) THEN
  288:          VLL = VL
  289:          VUU = VU
  290:       END IF
  291:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
  292:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  293:          ISCALE = 1
  294:          SIGMA = RMIN / ANRM
  295:       ELSE IF( ANRM.GT.RMAX ) THEN
  296:          ISCALE = 1
  297:          SIGMA = RMAX / ANRM
  298:       END IF
  299:       IF( ISCALE.EQ.1 ) THEN
  300:          IF( LOWER ) THEN
  301:             DO 10 J = 1, N
  302:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
  303:    10       CONTINUE
  304:          ELSE
  305:             DO 20 J = 1, N
  306:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
  307:    20       CONTINUE
  308:          END IF
  309:          IF( ABSTOL.GT.0 )
  310:      $      ABSTLL = ABSTOL*SIGMA
  311:          IF( VALEIG ) THEN
  312:             VLL = VL*SIGMA
  313:             VUU = VU*SIGMA
  314:          END IF
  315:       END IF
  316: *
  317: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
  318: *
  319:       INDD = 1
  320:       INDE = INDD + N
  321:       INDRWK = INDE + N
  322:       INDTAU = 1
  323:       INDWRK = INDTAU + N
  324:       LLWORK = LWORK - INDWRK + 1
  325:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDD ), RWORK( INDE ),
  326:      $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
  327: *
  328: *     If all eigenvalues are desired and ABSTOL is less than or equal to
  329: *     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
  330: *     some eigenvalue, then try DSTEBZ.
  331: *
  332:       TEST = .FALSE.
  333:       IF( INDEIG ) THEN
  334:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
  335:             TEST = .TRUE.
  336:          END IF
  337:       END IF
  338:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
  339:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
  340:          INDEE = INDRWK + 2*N
  341:          IF( .NOT.WANTZ ) THEN
  342:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  343:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
  344:          ELSE
  345:             CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
  346:             CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
  347:      $                   WORK( INDWRK ), LLWORK, IINFO )
  348:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  349:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  350:      $                   RWORK( INDRWK ), INFO )
  351:             IF( INFO.EQ.0 ) THEN
  352:                DO 30 I = 1, N
  353:                   IFAIL( I ) = 0
  354:    30          CONTINUE
  355:             END IF
  356:          END IF
  357:          IF( INFO.EQ.0 ) THEN
  358:             M = N
  359:             GO TO 40
  360:          END IF
  361:          INFO = 0
  362:       END IF
  363: *
  364: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
  365: *
  366:       IF( WANTZ ) THEN
  367:          ORDER = 'B'
  368:       ELSE
  369:          ORDER = 'E'
  370:       END IF
  371:       INDIBL = 1
  372:       INDISP = INDIBL + N
  373:       INDIWK = INDISP + N
  374:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  375:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  376:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  377:      $             IWORK( INDIWK ), INFO )
  378: *
  379:       IF( WANTZ ) THEN
  380:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  381:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  382:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  383: *
  384: *        Apply unitary matrix used in reduction to tridiagonal
  385: *        form to eigenvectors returned by ZSTEIN.
  386: *
  387:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
  388:      $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
  389:       END IF
  390: *
  391: *     If matrix was scaled, then rescale eigenvalues appropriately.
  392: *
  393:    40 CONTINUE
  394:       IF( ISCALE.EQ.1 ) THEN
  395:          IF( INFO.EQ.0 ) THEN
  396:             IMAX = M
  397:          ELSE
  398:             IMAX = INFO - 1
  399:          END IF
  400:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  401:       END IF
  402: *
  403: *     If eigenvalues are not in order, then sort them, along with
  404: *     eigenvectors.
  405: *
  406:       IF( WANTZ ) THEN
  407:          DO 60 J = 1, M - 1
  408:             I = 0
  409:             TMP1 = W( J )
  410:             DO 50 JJ = J + 1, M
  411:                IF( W( JJ ).LT.TMP1 ) THEN
  412:                   I = JJ
  413:                   TMP1 = W( JJ )
  414:                END IF
  415:    50       CONTINUE
  416: *
  417:             IF( I.NE.0 ) THEN
  418:                ITMP1 = IWORK( INDIBL+I-1 )
  419:                W( I ) = W( J )
  420:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  421:                W( J ) = TMP1
  422:                IWORK( INDIBL+J-1 ) = ITMP1
  423:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  424:                IF( INFO.NE.0 ) THEN
  425:                   ITMP1 = IFAIL( I )
  426:                   IFAIL( I ) = IFAIL( J )
  427:                   IFAIL( J ) = ITMP1
  428:                END IF
  429:             END IF
  430:    60    CONTINUE
  431:       END IF
  432: *
  433: *     Set WORK(1) to optimal complex workspace size.
  434: *
  435:       WORK( 1 ) = LWKOPT
  436: *
  437:       RETURN
  438: *
  439: *     End of ZHEEVX
  440: *
  441:       END

CVSweb interface <joel.bertrand@systella.fr>