Annotation of rpl/lapack/lapack/zheevx.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
                      2:      $                   ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK,
                      3:      $                   IWORK, IFAIL, INFO )
                      4: *
1.8     ! bertrand    5: *  -- LAPACK driver routine (version 3.3.1) --
1.1       bertrand    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand    8: *  -- April 2011                                                      --
        !             9: * @precisions normal z -> c
1.1       bertrand   10: *
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          JOBZ, RANGE, UPLO
                     13:       INTEGER            IL, INFO, IU, LDA, LDZ, LWORK, M, N
                     14:       DOUBLE PRECISION   ABSTOL, VL, VU
                     15: *     ..
                     16: *     .. Array Arguments ..
                     17:       INTEGER            IFAIL( * ), IWORK( * )
                     18:       DOUBLE PRECISION   RWORK( * ), W( * )
                     19:       COMPLEX*16         A( LDA, * ), WORK( * ), Z( LDZ, * )
                     20: *     ..
                     21: *
                     22: *  Purpose
                     23: *  =======
                     24: *
                     25: *  ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
                     26: *  of a complex Hermitian matrix A.  Eigenvalues and eigenvectors can
                     27: *  be selected by specifying either a range of values or a range of
                     28: *  indices for the desired eigenvalues.
                     29: *
                     30: *  Arguments
                     31: *  =========
                     32: *
                     33: *  JOBZ    (input) CHARACTER*1
                     34: *          = 'N':  Compute eigenvalues only;
                     35: *          = 'V':  Compute eigenvalues and eigenvectors.
                     36: *
                     37: *  RANGE   (input) CHARACTER*1
                     38: *          = 'A': all eigenvalues will be found.
                     39: *          = 'V': all eigenvalues in the half-open interval (VL,VU]
                     40: *                 will be found.
                     41: *          = 'I': the IL-th through IU-th eigenvalues will be found.
                     42: *
                     43: *  UPLO    (input) CHARACTER*1
                     44: *          = 'U':  Upper triangle of A is stored;
                     45: *          = 'L':  Lower triangle of A is stored.
                     46: *
                     47: *  N       (input) INTEGER
                     48: *          The order of the matrix A.  N >= 0.
                     49: *
                     50: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
                     51: *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     52: *          leading N-by-N upper triangular part of A contains the
                     53: *          upper triangular part of the matrix A.  If UPLO = 'L',
                     54: *          the leading N-by-N lower triangular part of A contains
                     55: *          the lower triangular part of the matrix A.
                     56: *          On exit, the lower triangle (if UPLO='L') or the upper
                     57: *          triangle (if UPLO='U') of A, including the diagonal, is
                     58: *          destroyed.
                     59: *
                     60: *  LDA     (input) INTEGER
                     61: *          The leading dimension of the array A.  LDA >= max(1,N).
                     62: *
                     63: *  VL      (input) DOUBLE PRECISION
                     64: *  VU      (input) DOUBLE PRECISION
                     65: *          If RANGE='V', the lower and upper bounds of the interval to
                     66: *          be searched for eigenvalues. VL < VU.
                     67: *          Not referenced if RANGE = 'A' or 'I'.
                     68: *
                     69: *  IL      (input) INTEGER
                     70: *  IU      (input) INTEGER
                     71: *          If RANGE='I', the indices (in ascending order) of the
                     72: *          smallest and largest eigenvalues to be returned.
                     73: *          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                     74: *          Not referenced if RANGE = 'A' or 'V'.
                     75: *
                     76: *  ABSTOL  (input) DOUBLE PRECISION
                     77: *          The absolute error tolerance for the eigenvalues.
                     78: *          An approximate eigenvalue is accepted as converged
                     79: *          when it is determined to lie in an interval [a,b]
                     80: *          of width less than or equal to
                     81: *
                     82: *                  ABSTOL + EPS *   max( |a|,|b| ) ,
                     83: *
                     84: *          where EPS is the machine precision.  If ABSTOL is less than
                     85: *          or equal to zero, then  EPS*|T|  will be used in its place,
                     86: *          where |T| is the 1-norm of the tridiagonal matrix obtained
                     87: *          by reducing A to tridiagonal form.
                     88: *
                     89: *          Eigenvalues will be computed most accurately when ABSTOL is
                     90: *          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                     91: *          If this routine returns with INFO>0, indicating that some
                     92: *          eigenvectors did not converge, try setting ABSTOL to
                     93: *          2*DLAMCH('S').
                     94: *
                     95: *          See "Computing Small Singular Values of Bidiagonal Matrices
                     96: *          with Guaranteed High Relative Accuracy," by Demmel and
                     97: *          Kahan, LAPACK Working Note #3.
                     98: *
                     99: *  M       (output) INTEGER
                    100: *          The total number of eigenvalues found.  0 <= M <= N.
                    101: *          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
                    102: *
                    103: *  W       (output) DOUBLE PRECISION array, dimension (N)
                    104: *          On normal exit, the first M elements contain the selected
                    105: *          eigenvalues in ascending order.
                    106: *
                    107: *  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
                    108: *          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                    109: *          contain the orthonormal eigenvectors of the matrix A
                    110: *          corresponding to the selected eigenvalues, with the i-th
                    111: *          column of Z holding the eigenvector associated with W(i).
                    112: *          If an eigenvector fails to converge, then that column of Z
                    113: *          contains the latest approximation to the eigenvector, and the
                    114: *          index of the eigenvector is returned in IFAIL.
                    115: *          If JOBZ = 'N', then Z is not referenced.
                    116: *          Note: the user must ensure that at least max(1,M) columns are
                    117: *          supplied in the array Z; if RANGE = 'V', the exact value of M
                    118: *          is not known in advance and an upper bound must be used.
                    119: *
                    120: *  LDZ     (input) INTEGER
                    121: *          The leading dimension of the array Z.  LDZ >= 1, and if
                    122: *          JOBZ = 'V', LDZ >= max(1,N).
                    123: *
                    124: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    125: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    126: *
                    127: *  LWORK   (input) INTEGER
                    128: *          The length of the array WORK.  LWORK >= 1, when N <= 1;
                    129: *          otherwise 2*N.
                    130: *          For optimal efficiency, LWORK >= (NB+1)*N,
                    131: *          where NB is the max of the blocksize for ZHETRD and for
                    132: *          ZUNMTR as returned by ILAENV.
                    133: *
                    134: *          If LWORK = -1, then a workspace query is assumed; the routine
                    135: *          only calculates the optimal size of the WORK array, returns
                    136: *          this value as the first entry of the WORK array, and no error
                    137: *          message related to LWORK is issued by XERBLA.
                    138: *
                    139: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N)
                    140: *
                    141: *  IWORK   (workspace) INTEGER array, dimension (5*N)
                    142: *
                    143: *  IFAIL   (output) INTEGER array, dimension (N)
                    144: *          If JOBZ = 'V', then if INFO = 0, the first M elements of
                    145: *          IFAIL are zero.  If INFO > 0, then IFAIL contains the
                    146: *          indices of the eigenvectors that failed to converge.
                    147: *          If JOBZ = 'N', then IFAIL is not referenced.
                    148: *
                    149: *  INFO    (output) INTEGER
                    150: *          = 0:  successful exit
                    151: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    152: *          > 0:  if INFO = i, then i eigenvectors failed to converge.
                    153: *                Their indices are stored in array IFAIL.
                    154: *
                    155: *  =====================================================================
                    156: *
                    157: *     .. Parameters ..
                    158:       DOUBLE PRECISION   ZERO, ONE
                    159:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    160:       COMPLEX*16         CONE
                    161:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    162: *     ..
                    163: *     .. Local Scalars ..
                    164:       LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
                    165:      $                   WANTZ
                    166:       CHARACTER          ORDER
                    167:       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
                    168:      $                   INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
                    169:      $                   ITMP1, J, JJ, LLWORK, LWKMIN, LWKOPT, NB,
                    170:      $                   NSPLIT
                    171:       DOUBLE PRECISION   ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
                    172:      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
                    173: *     ..
                    174: *     .. External Functions ..
                    175:       LOGICAL            LSAME
                    176:       INTEGER            ILAENV
                    177:       DOUBLE PRECISION   DLAMCH, ZLANHE
                    178:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
                    179: *     ..
                    180: *     .. External Subroutines ..
                    181:       EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
                    182:      $                   ZHETRD, ZLACPY, ZSTEIN, ZSTEQR, ZSWAP, ZUNGTR,
                    183:      $                   ZUNMTR
                    184: *     ..
                    185: *     .. Intrinsic Functions ..
                    186:       INTRINSIC          DBLE, MAX, MIN, SQRT
                    187: *     ..
                    188: *     .. Executable Statements ..
                    189: *
                    190: *     Test the input parameters.
                    191: *
                    192:       LOWER = LSAME( UPLO, 'L' )
                    193:       WANTZ = LSAME( JOBZ, 'V' )
                    194:       ALLEIG = LSAME( RANGE, 'A' )
                    195:       VALEIG = LSAME( RANGE, 'V' )
                    196:       INDEIG = LSAME( RANGE, 'I' )
                    197:       LQUERY = ( LWORK.EQ.-1 )
                    198: *
                    199:       INFO = 0
                    200:       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
                    201:          INFO = -1
                    202:       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
                    203:          INFO = -2
                    204:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    205:          INFO = -3
                    206:       ELSE IF( N.LT.0 ) THEN
                    207:          INFO = -4
                    208:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    209:          INFO = -6
                    210:       ELSE
                    211:          IF( VALEIG ) THEN
                    212:             IF( N.GT.0 .AND. VU.LE.VL )
                    213:      $         INFO = -8
                    214:          ELSE IF( INDEIG ) THEN
                    215:             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
                    216:                INFO = -9
                    217:             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
                    218:                INFO = -10
                    219:             END IF
                    220:          END IF
                    221:       END IF
                    222:       IF( INFO.EQ.0 ) THEN
                    223:          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    224:             INFO = -15
                    225:          END IF
                    226:       END IF
                    227: *
                    228:       IF( INFO.EQ.0 ) THEN
                    229:          IF( N.LE.1 ) THEN
                    230:             LWKMIN = 1
                    231:             WORK( 1 ) = LWKMIN
                    232:          ELSE
                    233:             LWKMIN = 2*N
                    234:             NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
                    235:             NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) )
                    236:             LWKOPT = MAX( 1, ( NB + 1 )*N )
                    237:             WORK( 1 ) = LWKOPT
                    238:          END IF
                    239: *
1.8     ! bertrand  240:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
1.1       bertrand  241:      $      INFO = -17
                    242:       END IF
                    243: *
                    244:       IF( INFO.NE.0 ) THEN
                    245:          CALL XERBLA( 'ZHEEVX', -INFO )
                    246:          RETURN
                    247:       ELSE IF( LQUERY ) THEN
                    248:          RETURN
                    249:       END IF
                    250: *
                    251: *     Quick return if possible
                    252: *
                    253:       M = 0
                    254:       IF( N.EQ.0 ) THEN
                    255:          RETURN
                    256:       END IF
                    257: *
                    258:       IF( N.EQ.1 ) THEN
                    259:          IF( ALLEIG .OR. INDEIG ) THEN
                    260:             M = 1
                    261:             W( 1 ) = A( 1, 1 )
                    262:          ELSE IF( VALEIG ) THEN
                    263:             IF( VL.LT.DBLE( A( 1, 1 ) ) .AND. VU.GE.DBLE( A( 1, 1 ) ) )
                    264:      $           THEN
                    265:                M = 1
                    266:                W( 1 ) = A( 1, 1 )
                    267:             END IF
                    268:          END IF
                    269:          IF( WANTZ )
                    270:      $      Z( 1, 1 ) = CONE
                    271:          RETURN
                    272:       END IF
                    273: *
                    274: *     Get machine constants.
                    275: *
                    276:       SAFMIN = DLAMCH( 'Safe minimum' )
                    277:       EPS = DLAMCH( 'Precision' )
                    278:       SMLNUM = SAFMIN / EPS
                    279:       BIGNUM = ONE / SMLNUM
                    280:       RMIN = SQRT( SMLNUM )
                    281:       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
                    282: *
                    283: *     Scale matrix to allowable range, if necessary.
                    284: *
                    285:       ISCALE = 0
                    286:       ABSTLL = ABSTOL
                    287:       IF( VALEIG ) THEN
                    288:          VLL = VL
                    289:          VUU = VU
                    290:       END IF
                    291:       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
                    292:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    293:          ISCALE = 1
                    294:          SIGMA = RMIN / ANRM
                    295:       ELSE IF( ANRM.GT.RMAX ) THEN
                    296:          ISCALE = 1
                    297:          SIGMA = RMAX / ANRM
                    298:       END IF
                    299:       IF( ISCALE.EQ.1 ) THEN
                    300:          IF( LOWER ) THEN
                    301:             DO 10 J = 1, N
                    302:                CALL ZDSCAL( N-J+1, SIGMA, A( J, J ), 1 )
                    303:    10       CONTINUE
                    304:          ELSE
                    305:             DO 20 J = 1, N
                    306:                CALL ZDSCAL( J, SIGMA, A( 1, J ), 1 )
                    307:    20       CONTINUE
                    308:          END IF
                    309:          IF( ABSTOL.GT.0 )
                    310:      $      ABSTLL = ABSTOL*SIGMA
                    311:          IF( VALEIG ) THEN
                    312:             VLL = VL*SIGMA
                    313:             VUU = VU*SIGMA
                    314:          END IF
                    315:       END IF
                    316: *
                    317: *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
                    318: *
                    319:       INDD = 1
                    320:       INDE = INDD + N
                    321:       INDRWK = INDE + N
                    322:       INDTAU = 1
                    323:       INDWRK = INDTAU + N
                    324:       LLWORK = LWORK - INDWRK + 1
                    325:       CALL ZHETRD( UPLO, N, A, LDA, RWORK( INDD ), RWORK( INDE ),
                    326:      $             WORK( INDTAU ), WORK( INDWRK ), LLWORK, IINFO )
                    327: *
                    328: *     If all eigenvalues are desired and ABSTOL is less than or equal to
                    329: *     zero, then call DSTERF or ZUNGTR and ZSTEQR.  If this fails for
                    330: *     some eigenvalue, then try DSTEBZ.
                    331: *
                    332:       TEST = .FALSE.
                    333:       IF( INDEIG ) THEN
                    334:          IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
                    335:             TEST = .TRUE.
                    336:          END IF
                    337:       END IF
                    338:       IF( ( ALLEIG .OR. TEST ) .AND. ( ABSTOL.LE.ZERO ) ) THEN
                    339:          CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
                    340:          INDEE = INDRWK + 2*N
                    341:          IF( .NOT.WANTZ ) THEN
                    342:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    343:             CALL DSTERF( N, W, RWORK( INDEE ), INFO )
                    344:          ELSE
                    345:             CALL ZLACPY( 'A', N, N, A, LDA, Z, LDZ )
                    346:             CALL ZUNGTR( UPLO, N, Z, LDZ, WORK( INDTAU ),
                    347:      $                   WORK( INDWRK ), LLWORK, IINFO )
                    348:             CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
                    349:             CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
                    350:      $                   RWORK( INDRWK ), INFO )
                    351:             IF( INFO.EQ.0 ) THEN
                    352:                DO 30 I = 1, N
                    353:                   IFAIL( I ) = 0
                    354:    30          CONTINUE
                    355:             END IF
                    356:          END IF
                    357:          IF( INFO.EQ.0 ) THEN
                    358:             M = N
                    359:             GO TO 40
                    360:          END IF
                    361:          INFO = 0
                    362:       END IF
                    363: *
                    364: *     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
                    365: *
                    366:       IF( WANTZ ) THEN
                    367:          ORDER = 'B'
                    368:       ELSE
                    369:          ORDER = 'E'
                    370:       END IF
                    371:       INDIBL = 1
                    372:       INDISP = INDIBL + N
                    373:       INDIWK = INDISP + N
                    374:       CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
                    375:      $             RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
                    376:      $             IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
                    377:      $             IWORK( INDIWK ), INFO )
                    378: *
                    379:       IF( WANTZ ) THEN
                    380:          CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
                    381:      $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
                    382:      $                RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
                    383: *
                    384: *        Apply unitary matrix used in reduction to tridiagonal
                    385: *        form to eigenvectors returned by ZSTEIN.
                    386: *
                    387:          CALL ZUNMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
                    388:      $                LDZ, WORK( INDWRK ), LLWORK, IINFO )
                    389:       END IF
                    390: *
                    391: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    392: *
                    393:    40 CONTINUE
                    394:       IF( ISCALE.EQ.1 ) THEN
                    395:          IF( INFO.EQ.0 ) THEN
                    396:             IMAX = M
                    397:          ELSE
                    398:             IMAX = INFO - 1
                    399:          END IF
                    400:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    401:       END IF
                    402: *
                    403: *     If eigenvalues are not in order, then sort them, along with
                    404: *     eigenvectors.
                    405: *
                    406:       IF( WANTZ ) THEN
                    407:          DO 60 J = 1, M - 1
                    408:             I = 0
                    409:             TMP1 = W( J )
                    410:             DO 50 JJ = J + 1, M
                    411:                IF( W( JJ ).LT.TMP1 ) THEN
                    412:                   I = JJ
                    413:                   TMP1 = W( JJ )
                    414:                END IF
                    415:    50       CONTINUE
                    416: *
                    417:             IF( I.NE.0 ) THEN
                    418:                ITMP1 = IWORK( INDIBL+I-1 )
                    419:                W( I ) = W( J )
                    420:                IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
                    421:                W( J ) = TMP1
                    422:                IWORK( INDIBL+J-1 ) = ITMP1
                    423:                CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
                    424:                IF( INFO.NE.0 ) THEN
                    425:                   ITMP1 = IFAIL( I )
                    426:                   IFAIL( I ) = IFAIL( J )
                    427:                   IFAIL( J ) = ITMP1
                    428:                END IF
                    429:             END IF
                    430:    60    CONTINUE
                    431:       END IF
                    432: *
                    433: *     Set WORK(1) to optimal complex workspace size.
                    434: *
                    435:       WORK( 1 ) = LWKOPT
                    436: *
                    437:       RETURN
                    438: *
                    439: *     End of ZHEEVX
                    440: *
                    441:       END

CVSweb interface <joel.bertrand@systella.fr>