File:  [local] / rpl / lapack / lapack / zhbevd_2stage.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:06:46 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_27, rpl-4_1_26, HEAD
Cohérence.

    1: *> \brief <b> ZHBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
    2: *
    3: *  @precisions fortran z -> s d c
    4: *
    5: *  =========== DOCUMENTATION ===========
    6: *
    7: * Online html documentation available at
    8: *            http://www.netlib.org/lapack/explore-html/
    9: *
   10: *> \htmlonly
   11: *> Download ZHBEVD_2STAGE + dependencies
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbevd_2stage.f">
   13: *> [TGZ]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbevd_2stage.f">
   15: *> [ZIP]</a>
   16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbevd_2stage.f">
   17: *> [TXT]</a>
   18: *> \endhtmlonly
   19: *
   20: *  Definition:
   21: *  ===========
   22: *
   23: *       SUBROUTINE ZHBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
   24: *                                 WORK, LWORK, RWORK, LRWORK, IWORK, 
   25: *                                 LIWORK, INFO )
   26: *
   27: *       IMPLICIT NONE
   28: *
   29: *       .. Scalar Arguments ..
   30: *       CHARACTER          JOBZ, UPLO
   31: *       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
   32: *       ..
   33: *       .. Array Arguments ..
   34: *       INTEGER            IWORK( * )
   35: *       DOUBLE PRECISION   RWORK( * ), W( * )
   36: *       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
   37: *       ..
   38: *
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> ZHBEVD_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
   46: *> a complex Hermitian band matrix A using the 2stage technique for
   47: *> the reduction to tridiagonal.  If eigenvectors are desired, it
   48: *> uses a divide and conquer algorithm.
   49: *>
   50: *> The divide and conquer algorithm makes very mild assumptions about
   51: *> floating point arithmetic. It will work on machines with a guard
   52: *> digit in add/subtract, or on those binary machines without guard
   53: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
   54: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
   55: *> without guard digits, but we know of none.
   56: *> \endverbatim
   57: *
   58: *  Arguments:
   59: *  ==========
   60: *
   61: *> \param[in] JOBZ
   62: *> \verbatim
   63: *>          JOBZ is CHARACTER*1
   64: *>          = 'N':  Compute eigenvalues only;
   65: *>          = 'V':  Compute eigenvalues and eigenvectors.
   66: *>                  Not available in this release.
   67: *> \endverbatim
   68: *>
   69: *> \param[in] UPLO
   70: *> \verbatim
   71: *>          UPLO is CHARACTER*1
   72: *>          = 'U':  Upper triangle of A is stored;
   73: *>          = 'L':  Lower triangle of A is stored.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>          The order of the matrix A.  N >= 0.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] KD
   83: *> \verbatim
   84: *>          KD is INTEGER
   85: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   86: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   87: *> \endverbatim
   88: *>
   89: *> \param[in,out] AB
   90: *> \verbatim
   91: *>          AB is COMPLEX*16 array, dimension (LDAB, N)
   92: *>          On entry, the upper or lower triangle of the Hermitian band
   93: *>          matrix A, stored in the first KD+1 rows of the array.  The
   94: *>          j-th column of A is stored in the j-th column of the array AB
   95: *>          as follows:
   96: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   97: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   98: *>
   99: *>          On exit, AB is overwritten by values generated during the
  100: *>          reduction to tridiagonal form.  If UPLO = 'U', the first
  101: *>          superdiagonal and the diagonal of the tridiagonal matrix T
  102: *>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
  103: *>          the diagonal and first subdiagonal of T are returned in the
  104: *>          first two rows of AB.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LDAB
  108: *> \verbatim
  109: *>          LDAB is INTEGER
  110: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] W
  114: *> \verbatim
  115: *>          W is DOUBLE PRECISION array, dimension (N)
  116: *>          If INFO = 0, the eigenvalues in ascending order.
  117: *> \endverbatim
  118: *>
  119: *> \param[out] Z
  120: *> \verbatim
  121: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
  122: *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
  123: *>          eigenvectors of the matrix A, with the i-th column of Z
  124: *>          holding the eigenvector associated with W(i).
  125: *>          If JOBZ = 'N', then Z is not referenced.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] LDZ
  129: *> \verbatim
  130: *>          LDZ is INTEGER
  131: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  132: *>          JOBZ = 'V', LDZ >= max(1,N).
  133: *> \endverbatim
  134: *>
  135: *> \param[out] WORK
  136: *> \verbatim
  137: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  138: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  139: *> \endverbatim
  140: *>
  141: *> \param[in] LWORK
  142: *> \verbatim
  143: *>          LWORK is INTEGER
  144: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
  145: *>          otherwise  
  146: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
  147: *>                                   LWORK = MAX(1, dimension) where
  148: *>                                   dimension = (2KD+1)*N + KD*NTHREADS
  149: *>                                   where KD is the size of the band.
  150: *>                                   NTHREADS is the number of threads used when
  151: *>                                   openMP compilation is enabled, otherwise =1.
  152: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
  153: *>
  154: *>          If LWORK = -1, then a workspace query is assumed; the routine
  155: *>          only calculates the optimal sizes of the WORK, RWORK and
  156: *>          IWORK arrays, returns these values as the first entries of
  157: *>          the WORK, RWORK and IWORK arrays, and no error message
  158: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  159: *> \endverbatim
  160: *>
  161: *> \param[out] RWORK
  162: *> \verbatim
  163: *>          RWORK is DOUBLE PRECISION array,
  164: *>                                         dimension (LRWORK)
  165: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  166: *> \endverbatim
  167: *>
  168: *> \param[in] LRWORK
  169: *> \verbatim
  170: *>          LRWORK is INTEGER
  171: *>          The dimension of array RWORK.
  172: *>          If N <= 1,               LRWORK must be at least 1.
  173: *>          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
  174: *>          If JOBZ = 'V' and N > 1, LRWORK must be at least
  175: *>                        1 + 5*N + 2*N**2.
  176: *>
  177: *>          If LRWORK = -1, then a workspace query is assumed; the
  178: *>          routine only calculates the optimal sizes of the WORK, RWORK
  179: *>          and IWORK arrays, returns these values as the first entries
  180: *>          of the WORK, RWORK and IWORK arrays, and no error message
  181: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  182: *> \endverbatim
  183: *>
  184: *> \param[out] IWORK
  185: *> \verbatim
  186: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  187: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  188: *> \endverbatim
  189: *>
  190: *> \param[in] LIWORK
  191: *> \verbatim
  192: *>          LIWORK is INTEGER
  193: *>          The dimension of array IWORK.
  194: *>          If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
  195: *>          If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
  196: *>
  197: *>          If LIWORK = -1, then a workspace query is assumed; the
  198: *>          routine only calculates the optimal sizes of the WORK, RWORK
  199: *>          and IWORK arrays, returns these values as the first entries
  200: *>          of the WORK, RWORK and IWORK arrays, and no error message
  201: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  202: *> \endverbatim
  203: *>
  204: *> \param[out] INFO
  205: *> \verbatim
  206: *>          INFO is INTEGER
  207: *>          = 0:  successful exit.
  208: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  209: *>          > 0:  if INFO = i, the algorithm failed to converge; i
  210: *>                off-diagonal elements of an intermediate tridiagonal
  211: *>                form did not converge to zero.
  212: *> \endverbatim
  213: *
  214: *  Authors:
  215: *  ========
  216: *
  217: *> \author Univ. of Tennessee
  218: *> \author Univ. of California Berkeley
  219: *> \author Univ. of Colorado Denver
  220: *> \author NAG Ltd.
  221: *
  222: *> \date December 2016
  223: *
  224: *> \ingroup complex16OTHEReigen
  225: *
  226: *> \par Further Details:
  227: *  =====================
  228: *>
  229: *> \verbatim
  230: *>
  231: *>  All details about the 2stage techniques are available in:
  232: *>
  233: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
  234: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
  235: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
  236: *>  of 2011 International Conference for High Performance Computing,
  237: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
  238: *>  Article 8 , 11 pages.
  239: *>  http://doi.acm.org/10.1145/2063384.2063394
  240: *>
  241: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
  242: *>  An improved parallel singular value algorithm and its implementation 
  243: *>  for multicore hardware, In Proceedings of 2013 International Conference
  244: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
  245: *>  Denver, Colorado, USA, 2013.
  246: *>  Article 90, 12 pages.
  247: *>  http://doi.acm.org/10.1145/2503210.2503292
  248: *>
  249: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
  250: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
  251: *>  calculations based on fine-grained memory aware tasks.
  252: *>  International Journal of High Performance Computing Applications.
  253: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
  254: *>  http://hpc.sagepub.com/content/28/2/196 
  255: *>
  256: *> \endverbatim
  257: *
  258: *  =====================================================================
  259:       SUBROUTINE ZHBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
  260:      $                          WORK, LWORK, RWORK, LRWORK, IWORK, 
  261:      $                          LIWORK, INFO )
  262: *
  263:       IMPLICIT NONE
  264: *
  265: *  -- LAPACK driver routine (version 3.7.0) --
  266: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  267: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  268: *     December 2016
  269: *
  270: *     .. Scalar Arguments ..
  271:       CHARACTER          JOBZ, UPLO
  272:       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
  273: *     ..
  274: *     .. Array Arguments ..
  275:       INTEGER            IWORK( * )
  276:       DOUBLE PRECISION   RWORK( * ), W( * )
  277:       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
  278: *     ..
  279: *
  280: *  =====================================================================
  281: *
  282: *     .. Parameters ..
  283:       DOUBLE PRECISION   ZERO, ONE
  284:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  285:       COMPLEX*16         CZERO, CONE
  286:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
  287:      $                   CONE = ( 1.0D0, 0.0D0 ) )
  288: *     ..
  289: *     .. Local Scalars ..
  290:       LOGICAL            LOWER, LQUERY, WANTZ
  291:       INTEGER            IINFO, IMAX, INDE, INDWK2, INDRWK, ISCALE,
  292:      $                   LLWORK, INDWK, LHTRD, LWTRD, IB, INDHOUS,
  293:      $                   LIWMIN, LLRWK, LLWK2, LRWMIN, LWMIN
  294:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
  295:      $                   SMLNUM
  296: *     ..
  297: *     .. External Functions ..
  298:       LOGICAL            LSAME
  299:       INTEGER            ILAENV
  300:       DOUBLE PRECISION   DLAMCH, ZLANHB
  301:       EXTERNAL           LSAME, DLAMCH, ZLANHB, ILAENV
  302: *     ..
  303: *     .. External Subroutines ..
  304:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZGEMM, ZLACPY,
  305:      $                   ZLASCL, ZSTEDC, ZHETRD_HB2ST
  306: *     ..
  307: *     .. Intrinsic Functions ..
  308:       INTRINSIC          DBLE, SQRT
  309: *     ..
  310: *     .. Executable Statements ..
  311: *
  312: *     Test the input parameters.
  313: *
  314:       WANTZ = LSAME( JOBZ, 'V' )
  315:       LOWER = LSAME( UPLO, 'L' )
  316:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
  317: *
  318:       INFO = 0
  319:       IF( N.LE.1 ) THEN
  320:          LWMIN = 1
  321:          LRWMIN = 1
  322:          LIWMIN = 1
  323:       ELSE
  324:          IB    = ILAENV( 18, 'ZHETRD_HB2ST', JOBZ, N, KD, -1, -1 )
  325:          LHTRD = ILAENV( 19, 'ZHETRD_HB2ST', JOBZ, N, KD, IB, -1 )
  326:          LWTRD = ILAENV( 20, 'ZHETRD_HB2ST', JOBZ, N, KD, IB, -1 )
  327:          IF( WANTZ ) THEN
  328:             LWMIN = 2*N**2
  329:             LRWMIN = 1 + 5*N + 2*N**2
  330:             LIWMIN = 3 + 5*N
  331:          ELSE
  332:             LWMIN  = MAX( N, LHTRD + LWTRD )
  333:             LRWMIN = N
  334:             LIWMIN = 1
  335:          END IF
  336:       END IF
  337:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
  338:          INFO = -1
  339:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  340:          INFO = -2
  341:       ELSE IF( N.LT.0 ) THEN
  342:          INFO = -3
  343:       ELSE IF( KD.LT.0 ) THEN
  344:          INFO = -4
  345:       ELSE IF( LDAB.LT.KD+1 ) THEN
  346:          INFO = -6
  347:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  348:          INFO = -9
  349:       END IF
  350: *
  351:       IF( INFO.EQ.0 ) THEN
  352:          WORK( 1 )  = LWMIN
  353:          RWORK( 1 ) = LRWMIN
  354:          IWORK( 1 ) = LIWMIN
  355: *
  356:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  357:             INFO = -11
  358:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  359:             INFO = -13
  360:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  361:             INFO = -15
  362:          END IF
  363:       END IF
  364: *
  365:       IF( INFO.NE.0 ) THEN
  366:          CALL XERBLA( 'ZHBEVD_2STAGE', -INFO )
  367:          RETURN
  368:       ELSE IF( LQUERY ) THEN
  369:          RETURN
  370:       END IF
  371: *
  372: *     Quick return if possible
  373: *
  374:       IF( N.EQ.0 )
  375:      $   RETURN
  376: *
  377:       IF( N.EQ.1 ) THEN
  378:          W( 1 ) = DBLE( AB( 1, 1 ) )
  379:          IF( WANTZ )
  380:      $      Z( 1, 1 ) = CONE
  381:          RETURN
  382:       END IF
  383: *
  384: *     Get machine constants.
  385: *
  386:       SAFMIN = DLAMCH( 'Safe minimum' )
  387:       EPS    = DLAMCH( 'Precision' )
  388:       SMLNUM = SAFMIN / EPS
  389:       BIGNUM = ONE / SMLNUM
  390:       RMIN   = SQRT( SMLNUM )
  391:       RMAX   = SQRT( BIGNUM )
  392: *
  393: *     Scale matrix to allowable range, if necessary.
  394: *
  395:       ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
  396:       ISCALE = 0
  397:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  398:          ISCALE = 1
  399:          SIGMA = RMIN / ANRM
  400:       ELSE IF( ANRM.GT.RMAX ) THEN
  401:          ISCALE = 1
  402:          SIGMA = RMAX / ANRM
  403:       END IF
  404:       IF( ISCALE.EQ.1 ) THEN
  405:          IF( LOWER ) THEN
  406:             CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  407:          ELSE
  408:             CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  409:          END IF
  410:       END IF
  411: *
  412: *     Call ZHBTRD_HB2ST to reduce Hermitian band matrix to tridiagonal form.
  413: *
  414:       INDE    = 1
  415:       INDRWK  = INDE + N
  416:       LLRWK   = LRWORK - INDRWK + 1
  417:       INDHOUS = 1
  418:       INDWK   = INDHOUS + LHTRD
  419:       LLWORK  = LWORK - INDWK + 1
  420:       INDWK2  = INDWK + N*N
  421:       LLWK2   = LWORK - INDWK2 + 1
  422: *
  423:       CALL ZHETRD_HB2ST( "N", JOBZ, UPLO, N, KD, AB, LDAB, W,
  424:      $                    RWORK( INDE ), WORK( INDHOUS ), LHTRD, 
  425:      $                    WORK( INDWK ), LLWORK, IINFO )
  426: *
  427: *     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEDC.
  428: *
  429:       IF( .NOT.WANTZ ) THEN
  430:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
  431:       ELSE
  432:          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
  433:      $                LLWK2, RWORK( INDRWK ), LLRWK, IWORK, LIWORK,
  434:      $                INFO )
  435:          CALL ZGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
  436:      $               WORK( INDWK2 ), N )
  437:          CALL ZLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
  438:       END IF
  439: *
  440: *     If matrix was scaled, then rescale eigenvalues appropriately.
  441: *
  442:       IF( ISCALE.EQ.1 ) THEN
  443:          IF( INFO.EQ.0 ) THEN
  444:             IMAX = N
  445:          ELSE
  446:             IMAX = INFO - 1
  447:          END IF
  448:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  449:       END IF
  450: *
  451:       WORK( 1 )  = LWMIN
  452:       RWORK( 1 ) = LRWMIN
  453:       IWORK( 1 ) = LIWMIN
  454:       RETURN
  455: *
  456: *     End of ZHBEVD_2STAGE
  457: *
  458:       END

CVSweb interface <joel.bertrand@systella.fr>