Annotation of rpl/lapack/lapack/zhbevd_2stage.f, revision 1.2

1.1       bertrand    1: *> \brief <b> ZHBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
                      2: *
                      3: *  @precisions fortran z -> s d c
                      4: *
                      5: *  =========== DOCUMENTATION ===========
                      6: *
                      7: * Online html documentation available at
                      8: *            http://www.netlib.org/lapack/explore-html/
                      9: *
                     10: *> \htmlonly
                     11: *> Download ZHBEVD_2STAGE + dependencies
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbevd_2stage.f">
                     13: *> [TGZ]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbevd_2stage.f">
                     15: *> [ZIP]</a>
                     16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbevd_2stage.f">
                     17: *> [TXT]</a>
                     18: *> \endhtmlonly
                     19: *
                     20: *  Definition:
                     21: *  ===========
                     22: *
                     23: *       SUBROUTINE ZHBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
                     24: *                                 WORK, LWORK, RWORK, LRWORK, IWORK, 
                     25: *                                 LIWORK, INFO )
                     26: *
                     27: *       IMPLICIT NONE
                     28: *
                     29: *       .. Scalar Arguments ..
                     30: *       CHARACTER          JOBZ, UPLO
                     31: *       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
                     32: *       ..
                     33: *       .. Array Arguments ..
                     34: *       INTEGER            IWORK( * )
                     35: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     36: *       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
                     37: *       ..
                     38: *
                     39: *
                     40: *> \par Purpose:
                     41: *  =============
                     42: *>
                     43: *> \verbatim
                     44: *>
                     45: *> ZHBEVD_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
                     46: *> a complex Hermitian band matrix A using the 2stage technique for
                     47: *> the reduction to tridiagonal.  If eigenvectors are desired, it
                     48: *> uses a divide and conquer algorithm.
                     49: *>
                     50: *> The divide and conquer algorithm makes very mild assumptions about
                     51: *> floating point arithmetic. It will work on machines with a guard
                     52: *> digit in add/subtract, or on those binary machines without guard
                     53: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     54: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     55: *> without guard digits, but we know of none.
                     56: *> \endverbatim
                     57: *
                     58: *  Arguments:
                     59: *  ==========
                     60: *
                     61: *> \param[in] JOBZ
                     62: *> \verbatim
                     63: *>          JOBZ is CHARACTER*1
                     64: *>          = 'N':  Compute eigenvalues only;
                     65: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     66: *>                  Not available in this release.
                     67: *> \endverbatim
                     68: *>
                     69: *> \param[in] UPLO
                     70: *> \verbatim
                     71: *>          UPLO is CHARACTER*1
                     72: *>          = 'U':  Upper triangle of A is stored;
                     73: *>          = 'L':  Lower triangle of A is stored.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] N
                     77: *> \verbatim
                     78: *>          N is INTEGER
                     79: *>          The order of the matrix A.  N >= 0.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] KD
                     83: *> \verbatim
                     84: *>          KD is INTEGER
                     85: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     86: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in,out] AB
                     90: *> \verbatim
                     91: *>          AB is COMPLEX*16 array, dimension (LDAB, N)
                     92: *>          On entry, the upper or lower triangle of the Hermitian band
                     93: *>          matrix A, stored in the first KD+1 rows of the array.  The
                     94: *>          j-th column of A is stored in the j-th column of the array AB
                     95: *>          as follows:
                     96: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     97: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     98: *>
                     99: *>          On exit, AB is overwritten by values generated during the
                    100: *>          reduction to tridiagonal form.  If UPLO = 'U', the first
                    101: *>          superdiagonal and the diagonal of the tridiagonal matrix T
                    102: *>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
                    103: *>          the diagonal and first subdiagonal of T are returned in the
                    104: *>          first two rows of AB.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] LDAB
                    108: *> \verbatim
                    109: *>          LDAB is INTEGER
                    110: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[out] W
                    114: *> \verbatim
                    115: *>          W is DOUBLE PRECISION array, dimension (N)
                    116: *>          If INFO = 0, the eigenvalues in ascending order.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[out] Z
                    120: *> \verbatim
                    121: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
                    122: *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                    123: *>          eigenvectors of the matrix A, with the i-th column of Z
                    124: *>          holding the eigenvector associated with W(i).
                    125: *>          If JOBZ = 'N', then Z is not referenced.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] LDZ
                    129: *> \verbatim
                    130: *>          LDZ is INTEGER
                    131: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    132: *>          JOBZ = 'V', LDZ >= max(1,N).
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[out] WORK
                    136: *> \verbatim
                    137: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    138: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    139: *> \endverbatim
                    140: *>
                    141: *> \param[in] LWORK
                    142: *> \verbatim
                    143: *>          LWORK is INTEGER
                    144: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
                    145: *>          otherwise  
                    146: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
                    147: *>                                   LWORK = MAX(1, dimension) where
                    148: *>                                   dimension = (2KD+1)*N + KD*NTHREADS
                    149: *>                                   where KD is the size of the band.
                    150: *>                                   NTHREADS is the number of threads used when
                    151: *>                                   openMP compilation is enabled, otherwise =1.
                    152: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
                    153: *>
                    154: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    155: *>          only calculates the optimal sizes of the WORK, RWORK and
                    156: *>          IWORK arrays, returns these values as the first entries of
                    157: *>          the WORK, RWORK and IWORK arrays, and no error message
                    158: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[out] RWORK
                    162: *> \verbatim
                    163: *>          RWORK is DOUBLE PRECISION array,
                    164: *>                                         dimension (LRWORK)
                    165: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
                    166: *> \endverbatim
                    167: *>
                    168: *> \param[in] LRWORK
                    169: *> \verbatim
                    170: *>          LRWORK is INTEGER
                    171: *>          The dimension of array RWORK.
                    172: *>          If N <= 1,               LRWORK must be at least 1.
                    173: *>          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
                    174: *>          If JOBZ = 'V' and N > 1, LRWORK must be at least
                    175: *>                        1 + 5*N + 2*N**2.
                    176: *>
                    177: *>          If LRWORK = -1, then a workspace query is assumed; the
                    178: *>          routine only calculates the optimal sizes of the WORK, RWORK
                    179: *>          and IWORK arrays, returns these values as the first entries
                    180: *>          of the WORK, RWORK and IWORK arrays, and no error message
                    181: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    182: *> \endverbatim
                    183: *>
                    184: *> \param[out] IWORK
                    185: *> \verbatim
                    186: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    187: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    188: *> \endverbatim
                    189: *>
                    190: *> \param[in] LIWORK
                    191: *> \verbatim
                    192: *>          LIWORK is INTEGER
                    193: *>          The dimension of array IWORK.
                    194: *>          If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
                    195: *>          If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
                    196: *>
                    197: *>          If LIWORK = -1, then a workspace query is assumed; the
                    198: *>          routine only calculates the optimal sizes of the WORK, RWORK
                    199: *>          and IWORK arrays, returns these values as the first entries
                    200: *>          of the WORK, RWORK and IWORK arrays, and no error message
                    201: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    202: *> \endverbatim
                    203: *>
                    204: *> \param[out] INFO
                    205: *> \verbatim
                    206: *>          INFO is INTEGER
                    207: *>          = 0:  successful exit.
                    208: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    209: *>          > 0:  if INFO = i, the algorithm failed to converge; i
                    210: *>                off-diagonal elements of an intermediate tridiagonal
                    211: *>                form did not converge to zero.
                    212: *> \endverbatim
                    213: *
                    214: *  Authors:
                    215: *  ========
                    216: *
                    217: *> \author Univ. of Tennessee
                    218: *> \author Univ. of California Berkeley
                    219: *> \author Univ. of Colorado Denver
                    220: *> \author NAG Ltd.
                    221: *
                    222: *> \date December 2016
                    223: *
                    224: *> \ingroup complex16OTHEReigen
                    225: *
                    226: *> \par Further Details:
                    227: *  =====================
                    228: *>
                    229: *> \verbatim
                    230: *>
                    231: *>  All details about the 2stage techniques are available in:
                    232: *>
                    233: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
                    234: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
                    235: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
                    236: *>  of 2011 International Conference for High Performance Computing,
                    237: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
                    238: *>  Article 8 , 11 pages.
                    239: *>  http://doi.acm.org/10.1145/2063384.2063394
                    240: *>
                    241: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
                    242: *>  An improved parallel singular value algorithm and its implementation 
                    243: *>  for multicore hardware, In Proceedings of 2013 International Conference
                    244: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
                    245: *>  Denver, Colorado, USA, 2013.
                    246: *>  Article 90, 12 pages.
                    247: *>  http://doi.acm.org/10.1145/2503210.2503292
                    248: *>
                    249: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
                    250: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
                    251: *>  calculations based on fine-grained memory aware tasks.
                    252: *>  International Journal of High Performance Computing Applications.
                    253: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
                    254: *>  http://hpc.sagepub.com/content/28/2/196 
                    255: *>
                    256: *> \endverbatim
                    257: *
                    258: *  =====================================================================
                    259:       SUBROUTINE ZHBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
                    260:      $                          WORK, LWORK, RWORK, LRWORK, IWORK, 
                    261:      $                          LIWORK, INFO )
                    262: *
                    263:       IMPLICIT NONE
                    264: *
                    265: *  -- LAPACK driver routine (version 3.7.0) --
                    266: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    267: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    268: *     December 2016
                    269: *
                    270: *     .. Scalar Arguments ..
                    271:       CHARACTER          JOBZ, UPLO
                    272:       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
                    273: *     ..
                    274: *     .. Array Arguments ..
                    275:       INTEGER            IWORK( * )
                    276:       DOUBLE PRECISION   RWORK( * ), W( * )
                    277:       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
                    278: *     ..
                    279: *
                    280: *  =====================================================================
                    281: *
                    282: *     .. Parameters ..
                    283:       DOUBLE PRECISION   ZERO, ONE
                    284:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    285:       COMPLEX*16         CZERO, CONE
                    286:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
                    287:      $                   CONE = ( 1.0D0, 0.0D0 ) )
                    288: *     ..
                    289: *     .. Local Scalars ..
                    290:       LOGICAL            LOWER, LQUERY, WANTZ
                    291:       INTEGER            IINFO, IMAX, INDE, INDWK2, INDRWK, ISCALE,
                    292:      $                   LLWORK, INDWK, LHTRD, LWTRD, IB, INDHOUS,
                    293:      $                   LIWMIN, LLRWK, LLWK2, LRWMIN, LWMIN
                    294:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    295:      $                   SMLNUM
                    296: *     ..
                    297: *     .. External Functions ..
                    298:       LOGICAL            LSAME
                    299:       INTEGER            ILAENV
                    300:       DOUBLE PRECISION   DLAMCH, ZLANHB
                    301:       EXTERNAL           LSAME, DLAMCH, ZLANHB, ILAENV
                    302: *     ..
                    303: *     .. External Subroutines ..
                    304:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZGEMM, ZLACPY,
                    305:      $                   ZLASCL, ZSTEDC, ZHETRD_HB2ST
                    306: *     ..
                    307: *     .. Intrinsic Functions ..
                    308:       INTRINSIC          DBLE, SQRT
                    309: *     ..
                    310: *     .. Executable Statements ..
                    311: *
                    312: *     Test the input parameters.
                    313: *
                    314:       WANTZ = LSAME( JOBZ, 'V' )
                    315:       LOWER = LSAME( UPLO, 'L' )
                    316:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
                    317: *
                    318:       INFO = 0
                    319:       IF( N.LE.1 ) THEN
                    320:          LWMIN = 1
                    321:          LRWMIN = 1
                    322:          LIWMIN = 1
                    323:       ELSE
                    324:          IB    = ILAENV( 18, 'ZHETRD_HB2ST', JOBZ, N, KD, -1, -1 )
                    325:          LHTRD = ILAENV( 19, 'ZHETRD_HB2ST', JOBZ, N, KD, IB, -1 )
                    326:          LWTRD = ILAENV( 20, 'ZHETRD_HB2ST', JOBZ, N, KD, IB, -1 )
                    327:          IF( WANTZ ) THEN
                    328:             LWMIN = 2*N**2
                    329:             LRWMIN = 1 + 5*N + 2*N**2
                    330:             LIWMIN = 3 + 5*N
                    331:          ELSE
                    332:             LWMIN  = MAX( N, LHTRD + LWTRD )
                    333:             LRWMIN = N
                    334:             LIWMIN = 1
                    335:          END IF
                    336:       END IF
                    337:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
                    338:          INFO = -1
                    339:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    340:          INFO = -2
                    341:       ELSE IF( N.LT.0 ) THEN
                    342:          INFO = -3
                    343:       ELSE IF( KD.LT.0 ) THEN
                    344:          INFO = -4
                    345:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    346:          INFO = -6
                    347:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    348:          INFO = -9
                    349:       END IF
                    350: *
                    351:       IF( INFO.EQ.0 ) THEN
                    352:          WORK( 1 )  = LWMIN
                    353:          RWORK( 1 ) = LRWMIN
                    354:          IWORK( 1 ) = LIWMIN
                    355: *
                    356:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    357:             INFO = -11
                    358:          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
                    359:             INFO = -13
                    360:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    361:             INFO = -15
                    362:          END IF
                    363:       END IF
                    364: *
                    365:       IF( INFO.NE.0 ) THEN
                    366:          CALL XERBLA( 'ZHBEVD_2STAGE', -INFO )
                    367:          RETURN
                    368:       ELSE IF( LQUERY ) THEN
                    369:          RETURN
                    370:       END IF
                    371: *
                    372: *     Quick return if possible
                    373: *
                    374:       IF( N.EQ.0 )
                    375:      $   RETURN
                    376: *
                    377:       IF( N.EQ.1 ) THEN
                    378:          W( 1 ) = DBLE( AB( 1, 1 ) )
                    379:          IF( WANTZ )
                    380:      $      Z( 1, 1 ) = CONE
                    381:          RETURN
                    382:       END IF
                    383: *
                    384: *     Get machine constants.
                    385: *
                    386:       SAFMIN = DLAMCH( 'Safe minimum' )
                    387:       EPS    = DLAMCH( 'Precision' )
                    388:       SMLNUM = SAFMIN / EPS
                    389:       BIGNUM = ONE / SMLNUM
                    390:       RMIN   = SQRT( SMLNUM )
                    391:       RMAX   = SQRT( BIGNUM )
                    392: *
                    393: *     Scale matrix to allowable range, if necessary.
                    394: *
                    395:       ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
                    396:       ISCALE = 0
                    397:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    398:          ISCALE = 1
                    399:          SIGMA = RMIN / ANRM
                    400:       ELSE IF( ANRM.GT.RMAX ) THEN
                    401:          ISCALE = 1
                    402:          SIGMA = RMAX / ANRM
                    403:       END IF
                    404:       IF( ISCALE.EQ.1 ) THEN
                    405:          IF( LOWER ) THEN
                    406:             CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    407:          ELSE
                    408:             CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    409:          END IF
                    410:       END IF
                    411: *
                    412: *     Call ZHBTRD_HB2ST to reduce Hermitian band matrix to tridiagonal form.
                    413: *
                    414:       INDE    = 1
                    415:       INDRWK  = INDE + N
                    416:       LLRWK   = LRWORK - INDRWK + 1
                    417:       INDHOUS = 1
                    418:       INDWK   = INDHOUS + LHTRD
                    419:       LLWORK  = LWORK - INDWK + 1
                    420:       INDWK2  = INDWK + N*N
                    421:       LLWK2   = LWORK - INDWK2 + 1
                    422: *
                    423:       CALL ZHETRD_HB2ST( "N", JOBZ, UPLO, N, KD, AB, LDAB, W,
                    424:      $                    RWORK( INDE ), WORK( INDHOUS ), LHTRD, 
                    425:      $                    WORK( INDWK ), LLWORK, IINFO )
                    426: *
                    427: *     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEDC.
                    428: *
                    429:       IF( .NOT.WANTZ ) THEN
                    430:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
                    431:       ELSE
                    432:          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
                    433:      $                LLWK2, RWORK( INDRWK ), LLRWK, IWORK, LIWORK,
                    434:      $                INFO )
                    435:          CALL ZGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
                    436:      $               WORK( INDWK2 ), N )
                    437:          CALL ZLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
                    438:       END IF
                    439: *
                    440: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    441: *
                    442:       IF( ISCALE.EQ.1 ) THEN
                    443:          IF( INFO.EQ.0 ) THEN
                    444:             IMAX = N
                    445:          ELSE
                    446:             IMAX = INFO - 1
                    447:          END IF
                    448:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    449:       END IF
                    450: *
                    451:       WORK( 1 )  = LWMIN
                    452:       RWORK( 1 ) = LRWMIN
                    453:       IWORK( 1 ) = LIWMIN
                    454:       RETURN
                    455: *
                    456: *     End of ZHBEVD_2STAGE
                    457: *
                    458:       END

CVSweb interface <joel.bertrand@systella.fr>