File:  [local] / rpl / lapack / lapack / zhbev_2stage.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Tue May 29 06:55:23 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief <b> ZHBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
    2: *
    3: *  @precisions fortran z -> s d c
    4: *
    5: *  =========== DOCUMENTATION ===========
    6: *
    7: * Online html documentation available at
    8: *            http://www.netlib.org/lapack/explore-html/
    9: *
   10: *> \htmlonly
   11: *> Download ZHBEV_2STAGE + dependencies
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbev_2stage.f">
   13: *> [TGZ]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbev_2stage.f">
   15: *> [ZIP]</a>
   16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbev_2stage.f">
   17: *> [TXT]</a>
   18: *> \endhtmlonly
   19: *
   20: *  Definition:
   21: *  ===========
   22: *
   23: *       SUBROUTINE ZHBEV_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
   24: *                                WORK, LWORK, RWORK, INFO )
   25: *
   26: *       IMPLICIT NONE
   27: *
   28: *       .. Scalar Arguments ..
   29: *       CHARACTER          JOBZ, UPLO
   30: *       INTEGER            INFO, KD, LDAB, LDZ, N, LWORK
   31: *       ..
   32: *       .. Array Arguments ..
   33: *       DOUBLE PRECISION   RWORK( * ), W( * )
   34: *       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZHBEV_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
   44: *> a complex Hermitian band matrix A using the 2stage technique for
   45: *> the reduction to tridiagonal.
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] JOBZ
   52: *> \verbatim
   53: *>          JOBZ is CHARACTER*1
   54: *>          = 'N':  Compute eigenvalues only;
   55: *>          = 'V':  Compute eigenvalues and eigenvectors.
   56: *>                  Not available in this release.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] UPLO
   60: *> \verbatim
   61: *>          UPLO is CHARACTER*1
   62: *>          = 'U':  Upper triangle of A is stored;
   63: *>          = 'L':  Lower triangle of A is stored.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] N
   67: *> \verbatim
   68: *>          N is INTEGER
   69: *>          The order of the matrix A.  N >= 0.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] KD
   73: *> \verbatim
   74: *>          KD is INTEGER
   75: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
   76: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
   77: *> \endverbatim
   78: *>
   79: *> \param[in,out] AB
   80: *> \verbatim
   81: *>          AB is COMPLEX*16 array, dimension (LDAB, N)
   82: *>          On entry, the upper or lower triangle of the Hermitian band
   83: *>          matrix A, stored in the first KD+1 rows of the array.  The
   84: *>          j-th column of A is stored in the j-th column of the array AB
   85: *>          as follows:
   86: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
   87: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
   88: *>
   89: *>          On exit, AB is overwritten by values generated during the
   90: *>          reduction to tridiagonal form.  If UPLO = 'U', the first
   91: *>          superdiagonal and the diagonal of the tridiagonal matrix T
   92: *>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
   93: *>          the diagonal and first subdiagonal of T are returned in the
   94: *>          first two rows of AB.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] LDAB
   98: *> \verbatim
   99: *>          LDAB is INTEGER
  100: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
  101: *> \endverbatim
  102: *>
  103: *> \param[out] W
  104: *> \verbatim
  105: *>          W is DOUBLE PRECISION array, dimension (N)
  106: *>          If INFO = 0, the eigenvalues in ascending order.
  107: *> \endverbatim
  108: *>
  109: *> \param[out] Z
  110: *> \verbatim
  111: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
  112: *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
  113: *>          eigenvectors of the matrix A, with the i-th column of Z
  114: *>          holding the eigenvector associated with W(i).
  115: *>          If JOBZ = 'N', then Z is not referenced.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] LDZ
  119: *> \verbatim
  120: *>          LDZ is INTEGER
  121: *>          The leading dimension of the array Z.  LDZ >= 1, and if
  122: *>          JOBZ = 'V', LDZ >= max(1,N).
  123: *> \endverbatim
  124: *>
  125: *> \param[out] WORK
  126: *> \verbatim
  127: *>          WORK is COMPLEX*16 array, dimension LWORK
  128: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LWORK
  132: *> \verbatim
  133: *>          LWORK is INTEGER
  134: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
  135: *>          otherwise  
  136: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
  137: *>                                   LWORK = MAX(1, dimension) where
  138: *>                                   dimension = (2KD+1)*N + KD*NTHREADS
  139: *>                                   where KD is the size of the band.
  140: *>                                   NTHREADS is the number of threads used when
  141: *>                                   openMP compilation is enabled, otherwise =1.
  142: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
  143: *>
  144: *>          If LWORK = -1, then a workspace query is assumed; the routine
  145: *>          only calculates the optimal sizes of the WORK, RWORK and
  146: *>          IWORK arrays, returns these values as the first entries of
  147: *>          the WORK, RWORK and IWORK arrays, and no error message
  148: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  149: *> \endverbatim
  150: *>
  151: *> \param[out] RWORK
  152: *> \verbatim
  153: *>          RWORK is DOUBLE PRECISION array, dimension (max(1,3*N-2))
  154: *> \endverbatim
  155: *>
  156: *> \param[out] INFO
  157: *> \verbatim
  158: *>          INFO is INTEGER
  159: *>          = 0:  successful exit.
  160: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  161: *>          > 0:  if INFO = i, the algorithm failed to converge; i
  162: *>                off-diagonal elements of an intermediate tridiagonal
  163: *>                form did not converge to zero.
  164: *> \endverbatim
  165: *
  166: *  Authors:
  167: *  ========
  168: *
  169: *> \author Univ. of Tennessee
  170: *> \author Univ. of California Berkeley
  171: *> \author Univ. of Colorado Denver
  172: *> \author NAG Ltd.
  173: *
  174: *> \date November 2017
  175: *
  176: *> \ingroup complex16OTHEReigen
  177: *
  178: *> \par Further Details:
  179: *  =====================
  180: *>
  181: *> \verbatim
  182: *>
  183: *>  All details about the 2stage techniques are available in:
  184: *>
  185: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
  186: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
  187: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
  188: *>  of 2011 International Conference for High Performance Computing,
  189: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
  190: *>  Article 8 , 11 pages.
  191: *>  http://doi.acm.org/10.1145/2063384.2063394
  192: *>
  193: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
  194: *>  An improved parallel singular value algorithm and its implementation 
  195: *>  for multicore hardware, In Proceedings of 2013 International Conference
  196: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
  197: *>  Denver, Colorado, USA, 2013.
  198: *>  Article 90, 12 pages.
  199: *>  http://doi.acm.org/10.1145/2503210.2503292
  200: *>
  201: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
  202: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
  203: *>  calculations based on fine-grained memory aware tasks.
  204: *>  International Journal of High Performance Computing Applications.
  205: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
  206: *>  http://hpc.sagepub.com/content/28/2/196 
  207: *>
  208: *> \endverbatim
  209: *
  210: *  =====================================================================
  211:       SUBROUTINE ZHBEV_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
  212:      $                         WORK, LWORK, RWORK, INFO )
  213: *
  214:       IMPLICIT NONE
  215: *
  216: *  -- LAPACK driver routine (version 3.8.0) --
  217: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  218: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  219: *     November 2017
  220: *
  221: *     .. Scalar Arguments ..
  222:       CHARACTER          JOBZ, UPLO
  223:       INTEGER            INFO, KD, LDAB, LDZ, N, LWORK
  224: *     ..
  225: *     .. Array Arguments ..
  226:       DOUBLE PRECISION   RWORK( * ), W( * )
  227:       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
  228: *     ..
  229: *
  230: *  =====================================================================
  231: *
  232: *     .. Parameters ..
  233:       DOUBLE PRECISION   ZERO, ONE
  234:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  235: *     ..
  236: *     .. Local Scalars ..
  237:       LOGICAL            LOWER, WANTZ, LQUERY
  238:       INTEGER            IINFO, IMAX, INDE, INDWRK, INDRWK, ISCALE,
  239:      $                   LLWORK, LWMIN, LHTRD, LWTRD, IB, INDHOUS
  240:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
  241:      $                   SMLNUM
  242: *     ..
  243: *     .. External Functions ..
  244:       LOGICAL            LSAME
  245:       INTEGER            ILAENV2STAGE
  246:       DOUBLE PRECISION   DLAMCH, ZLANHB
  247:       EXTERNAL           LSAME, DLAMCH, ZLANHB, ILAENV2STAGE
  248: *     ..
  249: *     .. External Subroutines ..
  250:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZLASCL, ZSTEQR,
  251:      $                   ZHETRD_2STAGE, ZHETRD_HB2ST
  252: *     ..
  253: *     .. Intrinsic Functions ..
  254:       INTRINSIC          DBLE, SQRT
  255: *     ..
  256: *     .. Executable Statements ..
  257: *
  258: *     Test the input parameters.
  259: *
  260:       WANTZ = LSAME( JOBZ, 'V' )
  261:       LOWER = LSAME( UPLO, 'L' )
  262:       LQUERY = ( LWORK.EQ.-1 )
  263: *
  264:       INFO = 0
  265:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
  266:          INFO = -1
  267:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  268:          INFO = -2
  269:       ELSE IF( N.LT.0 ) THEN
  270:          INFO = -3
  271:       ELSE IF( KD.LT.0 ) THEN
  272:          INFO = -4
  273:       ELSE IF( LDAB.LT.KD+1 ) THEN
  274:          INFO = -6
  275:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  276:          INFO = -9
  277:       END IF
  278: *
  279:       IF( INFO.EQ.0 ) THEN
  280:          IF( N.LE.1 ) THEN
  281:             LWMIN = 1
  282:             WORK( 1 ) = LWMIN
  283:          ELSE
  284:             IB    = ILAENV2STAGE( 2, 'ZHETRD_HB2ST', JOBZ,
  285:      $                            N, KD, -1, -1 )
  286:             LHTRD = ILAENV2STAGE( 3, 'ZHETRD_HB2ST', JOBZ,
  287:      $                            N, KD, IB, -1 )
  288:             LWTRD = ILAENV2STAGE( 4, 'ZHETRD_HB2ST', JOBZ,
  289:      $                            N, KD, IB, -1 )
  290:             LWMIN = LHTRD + LWTRD
  291:             WORK( 1 )  = LWMIN
  292:          ENDIF
  293: *
  294:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
  295:      $      INFO = -11
  296:       END IF
  297: *
  298:       IF( INFO.NE.0 ) THEN
  299:          CALL XERBLA( 'ZHBEV_2STAGE ', -INFO )
  300:          RETURN
  301:       ELSE IF( LQUERY ) THEN
  302:          RETURN
  303:       END IF
  304: *
  305: *     Quick return if possible
  306: *
  307:       IF( N.EQ.0 )
  308:      $   RETURN
  309: *
  310:       IF( N.EQ.1 ) THEN
  311:          IF( LOWER ) THEN
  312:             W( 1 ) = DBLE( AB( 1, 1 ) )
  313:          ELSE
  314:             W( 1 ) = DBLE( AB( KD+1, 1 ) )
  315:          END IF
  316:          IF( WANTZ )
  317:      $      Z( 1, 1 ) = ONE
  318:          RETURN
  319:       END IF
  320: *
  321: *     Get machine constants.
  322: *
  323:       SAFMIN = DLAMCH( 'Safe minimum' )
  324:       EPS    = DLAMCH( 'Precision' )
  325:       SMLNUM = SAFMIN / EPS
  326:       BIGNUM = ONE / SMLNUM
  327:       RMIN   = SQRT( SMLNUM )
  328:       RMAX   = SQRT( BIGNUM )
  329: *
  330: *     Scale matrix to allowable range, if necessary.
  331: *
  332:       ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
  333:       ISCALE = 0
  334:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  335:          ISCALE = 1
  336:          SIGMA = RMIN / ANRM
  337:       ELSE IF( ANRM.GT.RMAX ) THEN
  338:          ISCALE = 1
  339:          SIGMA = RMAX / ANRM
  340:       END IF
  341:       IF( ISCALE.EQ.1 ) THEN
  342:          IF( LOWER ) THEN
  343:             CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  344:          ELSE
  345:             CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  346:          END IF
  347:       END IF
  348: *
  349: *     Call ZHBTRD_HB2ST to reduce Hermitian band matrix to tridiagonal form.
  350: *
  351:       INDE    = 1
  352:       INDHOUS = 1
  353:       INDWRK  = INDHOUS + LHTRD
  354:       LLWORK  = LWORK - INDWRK + 1
  355: *
  356:       CALL ZHETRD_HB2ST( "N", JOBZ, UPLO, N, KD, AB, LDAB, W,
  357:      $                    RWORK( INDE ), WORK( INDHOUS ), LHTRD, 
  358:      $                    WORK( INDWRK ), LLWORK, IINFO )
  359: *
  360: *     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEQR.
  361: *
  362:       IF( .NOT.WANTZ ) THEN
  363:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
  364:       ELSE
  365:          INDRWK = INDE + N
  366:          CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
  367:      $                RWORK( INDRWK ), INFO )
  368:       END IF
  369: *
  370: *     If matrix was scaled, then rescale eigenvalues appropriately.
  371: *
  372:       IF( ISCALE.EQ.1 ) THEN
  373:          IF( INFO.EQ.0 ) THEN
  374:             IMAX = N
  375:          ELSE
  376:             IMAX = INFO - 1
  377:          END IF
  378:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
  379:       END IF
  380: *
  381: *     Set WORK(1) to optimal workspace size.
  382: *
  383:       WORK( 1 ) = LWMIN
  384: *
  385:       RETURN
  386: *
  387: *     End of ZHBEV_2STAGE
  388: *
  389:       END

CVSweb interface <joel.bertrand@systella.fr>