Annotation of rpl/lapack/lapack/zhbev_2stage.f, revision 1.3

1.1       bertrand    1: *> \brief <b> ZHBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
                      2: *
                      3: *  @precisions fortran z -> s d c
                      4: *
                      5: *  =========== DOCUMENTATION ===========
                      6: *
                      7: * Online html documentation available at
                      8: *            http://www.netlib.org/lapack/explore-html/
                      9: *
                     10: *> \htmlonly
                     11: *> Download ZHBEV_2STAGE + dependencies
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbev_2stage.f">
                     13: *> [TGZ]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbev_2stage.f">
                     15: *> [ZIP]</a>
                     16: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbev_2stage.f">
                     17: *> [TXT]</a>
                     18: *> \endhtmlonly
                     19: *
                     20: *  Definition:
                     21: *  ===========
                     22: *
                     23: *       SUBROUTINE ZHBEV_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
                     24: *                                WORK, LWORK, RWORK, INFO )
                     25: *
                     26: *       IMPLICIT NONE
                     27: *
                     28: *       .. Scalar Arguments ..
                     29: *       CHARACTER          JOBZ, UPLO
                     30: *       INTEGER            INFO, KD, LDAB, LDZ, N, LWORK
                     31: *       ..
                     32: *       .. Array Arguments ..
                     33: *       DOUBLE PRECISION   RWORK( * ), W( * )
                     34: *       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
                     35: *       ..
                     36: *
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> ZHBEV_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
                     44: *> a complex Hermitian band matrix A using the 2stage technique for
                     45: *> the reduction to tridiagonal.
                     46: *> \endverbatim
                     47: *
                     48: *  Arguments:
                     49: *  ==========
                     50: *
                     51: *> \param[in] JOBZ
                     52: *> \verbatim
                     53: *>          JOBZ is CHARACTER*1
                     54: *>          = 'N':  Compute eigenvalues only;
                     55: *>          = 'V':  Compute eigenvalues and eigenvectors.
                     56: *>                  Not available in this release.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] UPLO
                     60: *> \verbatim
                     61: *>          UPLO is CHARACTER*1
                     62: *>          = 'U':  Upper triangle of A is stored;
                     63: *>          = 'L':  Lower triangle of A is stored.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] N
                     67: *> \verbatim
                     68: *>          N is INTEGER
                     69: *>          The order of the matrix A.  N >= 0.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] KD
                     73: *> \verbatim
                     74: *>          KD is INTEGER
                     75: *>          The number of superdiagonals of the matrix A if UPLO = 'U',
                     76: *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in,out] AB
                     80: *> \verbatim
                     81: *>          AB is COMPLEX*16 array, dimension (LDAB, N)
                     82: *>          On entry, the upper or lower triangle of the Hermitian band
                     83: *>          matrix A, stored in the first KD+1 rows of the array.  The
                     84: *>          j-th column of A is stored in the j-th column of the array AB
                     85: *>          as follows:
                     86: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     87: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     88: *>
                     89: *>          On exit, AB is overwritten by values generated during the
                     90: *>          reduction to tridiagonal form.  If UPLO = 'U', the first
                     91: *>          superdiagonal and the diagonal of the tridiagonal matrix T
                     92: *>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
                     93: *>          the diagonal and first subdiagonal of T are returned in the
                     94: *>          first two rows of AB.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] LDAB
                     98: *> \verbatim
                     99: *>          LDAB is INTEGER
                    100: *>          The leading dimension of the array AB.  LDAB >= KD + 1.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[out] W
                    104: *> \verbatim
                    105: *>          W is DOUBLE PRECISION array, dimension (N)
                    106: *>          If INFO = 0, the eigenvalues in ascending order.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[out] Z
                    110: *> \verbatim
                    111: *>          Z is COMPLEX*16 array, dimension (LDZ, N)
                    112: *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
                    113: *>          eigenvectors of the matrix A, with the i-th column of Z
                    114: *>          holding the eigenvector associated with W(i).
                    115: *>          If JOBZ = 'N', then Z is not referenced.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] LDZ
                    119: *> \verbatim
                    120: *>          LDZ is INTEGER
                    121: *>          The leading dimension of the array Z.  LDZ >= 1, and if
                    122: *>          JOBZ = 'V', LDZ >= max(1,N).
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[out] WORK
                    126: *> \verbatim
                    127: *>          WORK is COMPLEX*16 array, dimension LWORK
                    128: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in] LWORK
                    132: *> \verbatim
                    133: *>          LWORK is INTEGER
                    134: *>          The length of the array WORK. LWORK >= 1, when N <= 1;
                    135: *>          otherwise  
                    136: *>          If JOBZ = 'N' and N > 1, LWORK must be queried.
                    137: *>                                   LWORK = MAX(1, dimension) where
                    138: *>                                   dimension = (2KD+1)*N + KD*NTHREADS
                    139: *>                                   where KD is the size of the band.
                    140: *>                                   NTHREADS is the number of threads used when
                    141: *>                                   openMP compilation is enabled, otherwise =1.
                    142: *>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
                    143: *>
                    144: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    145: *>          only calculates the optimal sizes of the WORK, RWORK and
                    146: *>          IWORK arrays, returns these values as the first entries of
                    147: *>          the WORK, RWORK and IWORK arrays, and no error message
                    148: *>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
                    149: *> \endverbatim
                    150: *>
                    151: *> \param[out] RWORK
                    152: *> \verbatim
                    153: *>          RWORK is DOUBLE PRECISION array, dimension (max(1,3*N-2))
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[out] INFO
                    157: *> \verbatim
                    158: *>          INFO is INTEGER
                    159: *>          = 0:  successful exit.
                    160: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    161: *>          > 0:  if INFO = i, the algorithm failed to converge; i
                    162: *>                off-diagonal elements of an intermediate tridiagonal
                    163: *>                form did not converge to zero.
                    164: *> \endverbatim
                    165: *
                    166: *  Authors:
                    167: *  ========
                    168: *
                    169: *> \author Univ. of Tennessee
                    170: *> \author Univ. of California Berkeley
                    171: *> \author Univ. of Colorado Denver
                    172: *> \author NAG Ltd.
                    173: *
1.3     ! bertrand  174: *> \date November 2017
1.1       bertrand  175: *
                    176: *> \ingroup complex16OTHEReigen
                    177: *
                    178: *> \par Further Details:
                    179: *  =====================
                    180: *>
                    181: *> \verbatim
                    182: *>
                    183: *>  All details about the 2stage techniques are available in:
                    184: *>
                    185: *>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
                    186: *>  Parallel reduction to condensed forms for symmetric eigenvalue problems
                    187: *>  using aggregated fine-grained and memory-aware kernels. In Proceedings
                    188: *>  of 2011 International Conference for High Performance Computing,
                    189: *>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
                    190: *>  Article 8 , 11 pages.
                    191: *>  http://doi.acm.org/10.1145/2063384.2063394
                    192: *>
                    193: *>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
                    194: *>  An improved parallel singular value algorithm and its implementation 
                    195: *>  for multicore hardware, In Proceedings of 2013 International Conference
                    196: *>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
                    197: *>  Denver, Colorado, USA, 2013.
                    198: *>  Article 90, 12 pages.
                    199: *>  http://doi.acm.org/10.1145/2503210.2503292
                    200: *>
                    201: *>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
                    202: *>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure 
                    203: *>  calculations based on fine-grained memory aware tasks.
                    204: *>  International Journal of High Performance Computing Applications.
                    205: *>  Volume 28 Issue 2, Pages 196-209, May 2014.
                    206: *>  http://hpc.sagepub.com/content/28/2/196 
                    207: *>
                    208: *> \endverbatim
                    209: *
                    210: *  =====================================================================
                    211:       SUBROUTINE ZHBEV_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
                    212:      $                         WORK, LWORK, RWORK, INFO )
                    213: *
                    214:       IMPLICIT NONE
                    215: *
1.3     ! bertrand  216: *  -- LAPACK driver routine (version 3.8.0) --
1.1       bertrand  217: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    218: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.3     ! bertrand  219: *     November 2017
1.1       bertrand  220: *
                    221: *     .. Scalar Arguments ..
                    222:       CHARACTER          JOBZ, UPLO
                    223:       INTEGER            INFO, KD, LDAB, LDZ, N, LWORK
                    224: *     ..
                    225: *     .. Array Arguments ..
                    226:       DOUBLE PRECISION   RWORK( * ), W( * )
                    227:       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
                    228: *     ..
                    229: *
                    230: *  =====================================================================
                    231: *
                    232: *     .. Parameters ..
                    233:       DOUBLE PRECISION   ZERO, ONE
                    234:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    235: *     ..
                    236: *     .. Local Scalars ..
                    237:       LOGICAL            LOWER, WANTZ, LQUERY
                    238:       INTEGER            IINFO, IMAX, INDE, INDWRK, INDRWK, ISCALE,
                    239:      $                   LLWORK, LWMIN, LHTRD, LWTRD, IB, INDHOUS
                    240:       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
                    241:      $                   SMLNUM
                    242: *     ..
                    243: *     .. External Functions ..
                    244:       LOGICAL            LSAME
1.3     ! bertrand  245:       INTEGER            ILAENV2STAGE
1.1       bertrand  246:       DOUBLE PRECISION   DLAMCH, ZLANHB
1.3     ! bertrand  247:       EXTERNAL           LSAME, DLAMCH, ZLANHB, ILAENV2STAGE
1.1       bertrand  248: *     ..
                    249: *     .. External Subroutines ..
1.3     ! bertrand  250:       EXTERNAL           DSCAL, DSTERF, XERBLA, ZLASCL, ZSTEQR,
        !           251:      $                   ZHETRD_2STAGE, ZHETRD_HB2ST
1.1       bertrand  252: *     ..
                    253: *     .. Intrinsic Functions ..
                    254:       INTRINSIC          DBLE, SQRT
                    255: *     ..
                    256: *     .. Executable Statements ..
                    257: *
                    258: *     Test the input parameters.
                    259: *
                    260:       WANTZ = LSAME( JOBZ, 'V' )
                    261:       LOWER = LSAME( UPLO, 'L' )
                    262:       LQUERY = ( LWORK.EQ.-1 )
                    263: *
                    264:       INFO = 0
                    265:       IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
                    266:          INFO = -1
                    267:       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
                    268:          INFO = -2
                    269:       ELSE IF( N.LT.0 ) THEN
                    270:          INFO = -3
                    271:       ELSE IF( KD.LT.0 ) THEN
                    272:          INFO = -4
                    273:       ELSE IF( LDAB.LT.KD+1 ) THEN
                    274:          INFO = -6
                    275:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    276:          INFO = -9
                    277:       END IF
                    278: *
                    279:       IF( INFO.EQ.0 ) THEN
                    280:          IF( N.LE.1 ) THEN
                    281:             LWMIN = 1
                    282:             WORK( 1 ) = LWMIN
                    283:          ELSE
1.3     ! bertrand  284:             IB    = ILAENV2STAGE( 2, 'ZHETRD_HB2ST', JOBZ,
        !           285:      $                            N, KD, -1, -1 )
        !           286:             LHTRD = ILAENV2STAGE( 3, 'ZHETRD_HB2ST', JOBZ,
        !           287:      $                            N, KD, IB, -1 )
        !           288:             LWTRD = ILAENV2STAGE( 4, 'ZHETRD_HB2ST', JOBZ,
        !           289:      $                            N, KD, IB, -1 )
1.1       bertrand  290:             LWMIN = LHTRD + LWTRD
                    291:             WORK( 1 )  = LWMIN
                    292:          ENDIF
                    293: *
                    294:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY )
                    295:      $      INFO = -11
                    296:       END IF
                    297: *
                    298:       IF( INFO.NE.0 ) THEN
                    299:          CALL XERBLA( 'ZHBEV_2STAGE ', -INFO )
                    300:          RETURN
                    301:       ELSE IF( LQUERY ) THEN
                    302:          RETURN
                    303:       END IF
                    304: *
                    305: *     Quick return if possible
                    306: *
                    307:       IF( N.EQ.0 )
                    308:      $   RETURN
                    309: *
                    310:       IF( N.EQ.1 ) THEN
                    311:          IF( LOWER ) THEN
                    312:             W( 1 ) = DBLE( AB( 1, 1 ) )
                    313:          ELSE
                    314:             W( 1 ) = DBLE( AB( KD+1, 1 ) )
                    315:          END IF
                    316:          IF( WANTZ )
                    317:      $      Z( 1, 1 ) = ONE
                    318:          RETURN
                    319:       END IF
                    320: *
                    321: *     Get machine constants.
                    322: *
                    323:       SAFMIN = DLAMCH( 'Safe minimum' )
                    324:       EPS    = DLAMCH( 'Precision' )
                    325:       SMLNUM = SAFMIN / EPS
                    326:       BIGNUM = ONE / SMLNUM
                    327:       RMIN   = SQRT( SMLNUM )
                    328:       RMAX   = SQRT( BIGNUM )
                    329: *
                    330: *     Scale matrix to allowable range, if necessary.
                    331: *
                    332:       ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
                    333:       ISCALE = 0
                    334:       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
                    335:          ISCALE = 1
                    336:          SIGMA = RMIN / ANRM
                    337:       ELSE IF( ANRM.GT.RMAX ) THEN
                    338:          ISCALE = 1
                    339:          SIGMA = RMAX / ANRM
                    340:       END IF
                    341:       IF( ISCALE.EQ.1 ) THEN
                    342:          IF( LOWER ) THEN
                    343:             CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    344:          ELSE
                    345:             CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
                    346:          END IF
                    347:       END IF
                    348: *
                    349: *     Call ZHBTRD_HB2ST to reduce Hermitian band matrix to tridiagonal form.
                    350: *
                    351:       INDE    = 1
                    352:       INDHOUS = 1
                    353:       INDWRK  = INDHOUS + LHTRD
                    354:       LLWORK  = LWORK - INDWRK + 1
                    355: *
                    356:       CALL ZHETRD_HB2ST( "N", JOBZ, UPLO, N, KD, AB, LDAB, W,
                    357:      $                    RWORK( INDE ), WORK( INDHOUS ), LHTRD, 
                    358:      $                    WORK( INDWRK ), LLWORK, IINFO )
                    359: *
                    360: *     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEQR.
                    361: *
                    362:       IF( .NOT.WANTZ ) THEN
                    363:          CALL DSTERF( N, W, RWORK( INDE ), INFO )
                    364:       ELSE
                    365:          INDRWK = INDE + N
                    366:          CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
                    367:      $                RWORK( INDRWK ), INFO )
                    368:       END IF
                    369: *
                    370: *     If matrix was scaled, then rescale eigenvalues appropriately.
                    371: *
                    372:       IF( ISCALE.EQ.1 ) THEN
                    373:          IF( INFO.EQ.0 ) THEN
                    374:             IMAX = N
                    375:          ELSE
                    376:             IMAX = INFO - 1
                    377:          END IF
                    378:          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
                    379:       END IF
                    380: *
                    381: *     Set WORK(1) to optimal workspace size.
                    382: *
                    383:       WORK( 1 ) = LWMIN
                    384: *
                    385:       RETURN
                    386: *
                    387: *     End of ZHBEV_2STAGE
                    388: *
                    389:       END

CVSweb interface <joel.bertrand@systella.fr>