File:  [local] / rpl / lapack / lapack / zggevx.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE ZGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
    2:      $                   ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI,
    3:      $                   LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV,
    4:      $                   WORK, LWORK, RWORK, IWORK, BWORK, INFO )
    5: *
    6: *  -- LAPACK driver routine (version 3.2) --
    7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    9: *     November 2006
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
   13:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
   14:       DOUBLE PRECISION   ABNRM, BBNRM
   15: *     ..
   16: *     .. Array Arguments ..
   17:       LOGICAL            BWORK( * )
   18:       INTEGER            IWORK( * )
   19:       DOUBLE PRECISION   LSCALE( * ), RCONDE( * ), RCONDV( * ),
   20:      $                   RSCALE( * ), RWORK( * )
   21:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
   22:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
   23:      $                   WORK( * )
   24: *     ..
   25: *
   26: *  Purpose
   27: *  =======
   28: *
   29: *  ZGGEVX computes for a pair of N-by-N complex nonsymmetric matrices
   30: *  (A,B) the generalized eigenvalues, and optionally, the left and/or
   31: *  right generalized eigenvectors.
   32: *
   33: *  Optionally, it also computes a balancing transformation to improve
   34: *  the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
   35: *  LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
   36: *  the eigenvalues (RCONDE), and reciprocal condition numbers for the
   37: *  right eigenvectors (RCONDV).
   38: *
   39: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar
   40: *  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
   41: *  singular. It is usually represented as the pair (alpha,beta), as
   42: *  there is a reasonable interpretation for beta=0, and even for both
   43: *  being zero.
   44: *
   45: *  The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
   46: *  of (A,B) satisfies
   47: *                   A * v(j) = lambda(j) * B * v(j) .
   48: *  The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
   49: *  of (A,B) satisfies
   50: *                   u(j)**H * A  = lambda(j) * u(j)**H * B.
   51: *  where u(j)**H is the conjugate-transpose of u(j).
   52: *
   53: *
   54: *  Arguments
   55: *  =========
   56: *
   57: *  BALANC  (input) CHARACTER*1
   58: *          Specifies the balance option to be performed:
   59: *          = 'N':  do not diagonally scale or permute;
   60: *          = 'P':  permute only;
   61: *          = 'S':  scale only;
   62: *          = 'B':  both permute and scale.
   63: *          Computed reciprocal condition numbers will be for the
   64: *          matrices after permuting and/or balancing. Permuting does
   65: *          not change condition numbers (in exact arithmetic), but
   66: *          balancing does.
   67: *
   68: *  JOBVL   (input) CHARACTER*1
   69: *          = 'N':  do not compute the left generalized eigenvectors;
   70: *          = 'V':  compute the left generalized eigenvectors.
   71: *
   72: *  JOBVR   (input) CHARACTER*1
   73: *          = 'N':  do not compute the right generalized eigenvectors;
   74: *          = 'V':  compute the right generalized eigenvectors.
   75: *
   76: *  SENSE   (input) CHARACTER*1
   77: *          Determines which reciprocal condition numbers are computed.
   78: *          = 'N': none are computed;
   79: *          = 'E': computed for eigenvalues only;
   80: *          = 'V': computed for eigenvectors only;
   81: *          = 'B': computed for eigenvalues and eigenvectors.
   82: *
   83: *  N       (input) INTEGER
   84: *          The order of the matrices A, B, VL, and VR.  N >= 0.
   85: *
   86: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
   87: *          On entry, the matrix A in the pair (A,B).
   88: *          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
   89: *          or both, then A contains the first part of the complex Schur
   90: *          form of the "balanced" versions of the input A and B.
   91: *
   92: *  LDA     (input) INTEGER
   93: *          The leading dimension of A.  LDA >= max(1,N).
   94: *
   95: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
   96: *          On entry, the matrix B in the pair (A,B).
   97: *          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
   98: *          or both, then B contains the second part of the complex
   99: *          Schur form of the "balanced" versions of the input A and B.
  100: *
  101: *  LDB     (input) INTEGER
  102: *          The leading dimension of B.  LDB >= max(1,N).
  103: *
  104: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
  105: *  BETA    (output) COMPLEX*16 array, dimension (N)
  106: *          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized
  107: *          eigenvalues.
  108: *
  109: *          Note: the quotient ALPHA(j)/BETA(j) ) may easily over- or
  110: *          underflow, and BETA(j) may even be zero.  Thus, the user
  111: *          should avoid naively computing the ratio ALPHA/BETA.
  112: *          However, ALPHA will be always less than and usually
  113: *          comparable with norm(A) in magnitude, and BETA always less
  114: *          than and usually comparable with norm(B).
  115: *
  116: *  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
  117: *          If JOBVL = 'V', the left generalized eigenvectors u(j) are
  118: *          stored one after another in the columns of VL, in the same
  119: *          order as their eigenvalues.
  120: *          Each eigenvector will be scaled so the largest component
  121: *          will have abs(real part) + abs(imag. part) = 1.
  122: *          Not referenced if JOBVL = 'N'.
  123: *
  124: *  LDVL    (input) INTEGER
  125: *          The leading dimension of the matrix VL. LDVL >= 1, and
  126: *          if JOBVL = 'V', LDVL >= N.
  127: *
  128: *  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
  129: *          If JOBVR = 'V', the right generalized eigenvectors v(j) are
  130: *          stored one after another in the columns of VR, in the same
  131: *          order as their eigenvalues.
  132: *          Each eigenvector will be scaled so the largest component
  133: *          will have abs(real part) + abs(imag. part) = 1.
  134: *          Not referenced if JOBVR = 'N'.
  135: *
  136: *  LDVR    (input) INTEGER
  137: *          The leading dimension of the matrix VR. LDVR >= 1, and
  138: *          if JOBVR = 'V', LDVR >= N.
  139: *
  140: *  ILO     (output) INTEGER
  141: *  IHI     (output) INTEGER
  142: *          ILO and IHI are integer values such that on exit
  143: *          A(i,j) = 0 and B(i,j) = 0 if i > j and
  144: *          j = 1,...,ILO-1 or i = IHI+1,...,N.
  145: *          If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
  146: *
  147: *  LSCALE  (output) DOUBLE PRECISION array, dimension (N)
  148: *          Details of the permutations and scaling factors applied
  149: *          to the left side of A and B.  If PL(j) is the index of the
  150: *          row interchanged with row j, and DL(j) is the scaling
  151: *          factor applied to row j, then
  152: *            LSCALE(j) = PL(j)  for j = 1,...,ILO-1
  153: *                      = DL(j)  for j = ILO,...,IHI
  154: *                      = PL(j)  for j = IHI+1,...,N.
  155: *          The order in which the interchanges are made is N to IHI+1,
  156: *          then 1 to ILO-1.
  157: *
  158: *  RSCALE  (output) DOUBLE PRECISION array, dimension (N)
  159: *          Details of the permutations and scaling factors applied
  160: *          to the right side of A and B.  If PR(j) is the index of the
  161: *          column interchanged with column j, and DR(j) is the scaling
  162: *          factor applied to column j, then
  163: *            RSCALE(j) = PR(j)  for j = 1,...,ILO-1
  164: *                      = DR(j)  for j = ILO,...,IHI
  165: *                      = PR(j)  for j = IHI+1,...,N
  166: *          The order in which the interchanges are made is N to IHI+1,
  167: *          then 1 to ILO-1.
  168: *
  169: *  ABNRM   (output) DOUBLE PRECISION
  170: *          The one-norm of the balanced matrix A.
  171: *
  172: *  BBNRM   (output) DOUBLE PRECISION
  173: *          The one-norm of the balanced matrix B.
  174: *
  175: *  RCONDE  (output) DOUBLE PRECISION array, dimension (N)
  176: *          If SENSE = 'E' or 'B', the reciprocal condition numbers of
  177: *          the eigenvalues, stored in consecutive elements of the array.
  178: *          If SENSE = 'N' or 'V', RCONDE is not referenced.
  179: *
  180: *  RCONDV  (output) DOUBLE PRECISION array, dimension (N)
  181: *          If JOB = 'V' or 'B', the estimated reciprocal condition
  182: *          numbers of the eigenvectors, stored in consecutive elements
  183: *          of the array. If the eigenvalues cannot be reordered to
  184: *          compute RCONDV(j), RCONDV(j) is set to 0; this can only occur
  185: *          when the true value would be very small anyway.
  186: *          If SENSE = 'N' or 'E', RCONDV is not referenced.
  187: *
  188: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
  189: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  190: *
  191: *  LWORK   (input) INTEGER
  192: *          The dimension of the array WORK. LWORK >= max(1,2*N).
  193: *          If SENSE = 'E', LWORK >= max(1,4*N).
  194: *          If SENSE = 'V' or 'B', LWORK >= max(1,2*N*N+2*N).
  195: *
  196: *          If LWORK = -1, then a workspace query is assumed; the routine
  197: *          only calculates the optimal size of the WORK array, returns
  198: *          this value as the first entry of the WORK array, and no error
  199: *          message related to LWORK is issued by XERBLA.
  200: *
  201: *  RWORK   (workspace) REAL array, dimension (lrwork)
  202: *          lrwork must be at least max(1,6*N) if BALANC = 'S' or 'B',
  203: *          and at least max(1,2*N) otherwise.
  204: *          Real workspace.
  205: *
  206: *  IWORK   (workspace) INTEGER array, dimension (N+2)
  207: *          If SENSE = 'E', IWORK is not referenced.
  208: *
  209: *  BWORK   (workspace) LOGICAL array, dimension (N)
  210: *          If SENSE = 'N', BWORK is not referenced.
  211: *
  212: *  INFO    (output) INTEGER
  213: *          = 0:  successful exit
  214: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  215: *          = 1,...,N:
  216: *                The QZ iteration failed.  No eigenvectors have been
  217: *                calculated, but ALPHA(j) and BETA(j) should be correct
  218: *                for j=INFO+1,...,N.
  219: *          > N:  =N+1: other than QZ iteration failed in ZHGEQZ.
  220: *                =N+2: error return from ZTGEVC.
  221: *
  222: *  Further Details
  223: *  ===============
  224: *
  225: *  Balancing a matrix pair (A,B) includes, first, permuting rows and
  226: *  columns to isolate eigenvalues, second, applying diagonal similarity
  227: *  transformation to the rows and columns to make the rows and columns
  228: *  as close in norm as possible. The computed reciprocal condition
  229: *  numbers correspond to the balanced matrix. Permuting rows and columns
  230: *  will not change the condition numbers (in exact arithmetic) but
  231: *  diagonal scaling will.  For further explanation of balancing, see
  232: *  section 4.11.1.2 of LAPACK Users' Guide.
  233: *
  234: *  An approximate error bound on the chordal distance between the i-th
  235: *  computed generalized eigenvalue w and the corresponding exact
  236: *  eigenvalue lambda is
  237: *
  238: *       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
  239: *
  240: *  An approximate error bound for the angle between the i-th computed
  241: *  eigenvector VL(i) or VR(i) is given by
  242: *
  243: *       EPS * norm(ABNRM, BBNRM) / DIF(i).
  244: *
  245: *  For further explanation of the reciprocal condition numbers RCONDE
  246: *  and RCONDV, see section 4.11 of LAPACK User's Guide.
  247: *
  248: *     .. Parameters ..
  249:       DOUBLE PRECISION   ZERO, ONE
  250:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  251:       COMPLEX*16         CZERO, CONE
  252:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  253:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  254: *     ..
  255: *     .. Local Scalars ..
  256:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
  257:      $                   WANTSB, WANTSE, WANTSN, WANTSV
  258:       CHARACTER          CHTEMP
  259:       INTEGER            I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
  260:      $                   ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK, MINWRK
  261:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  262:      $                   SMLNUM, TEMP
  263:       COMPLEX*16         X
  264: *     ..
  265: *     .. Local Arrays ..
  266:       LOGICAL            LDUMMA( 1 )
  267: *     ..
  268: *     .. External Subroutines ..
  269:       EXTERNAL           DLABAD, DLASCL, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL,
  270:      $                   ZGGHRD, ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC,
  271:      $                   ZTGSNA, ZUNGQR, ZUNMQR
  272: *     ..
  273: *     .. External Functions ..
  274:       LOGICAL            LSAME
  275:       INTEGER            ILAENV
  276:       DOUBLE PRECISION   DLAMCH, ZLANGE
  277:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
  278: *     ..
  279: *     .. Intrinsic Functions ..
  280:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
  281: *     ..
  282: *     .. Statement Functions ..
  283:       DOUBLE PRECISION   ABS1
  284: *     ..
  285: *     .. Statement Function definitions ..
  286:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
  287: *     ..
  288: *     .. Executable Statements ..
  289: *
  290: *     Decode the input arguments
  291: *
  292:       IF( LSAME( JOBVL, 'N' ) ) THEN
  293:          IJOBVL = 1
  294:          ILVL = .FALSE.
  295:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
  296:          IJOBVL = 2
  297:          ILVL = .TRUE.
  298:       ELSE
  299:          IJOBVL = -1
  300:          ILVL = .FALSE.
  301:       END IF
  302: *
  303:       IF( LSAME( JOBVR, 'N' ) ) THEN
  304:          IJOBVR = 1
  305:          ILVR = .FALSE.
  306:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
  307:          IJOBVR = 2
  308:          ILVR = .TRUE.
  309:       ELSE
  310:          IJOBVR = -1
  311:          ILVR = .FALSE.
  312:       END IF
  313:       ILV = ILVL .OR. ILVR
  314: *
  315:       NOSCL  = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
  316:       WANTSN = LSAME( SENSE, 'N' )
  317:       WANTSE = LSAME( SENSE, 'E' )
  318:       WANTSV = LSAME( SENSE, 'V' )
  319:       WANTSB = LSAME( SENSE, 'B' )
  320: *
  321: *     Test the input arguments
  322: *
  323:       INFO = 0
  324:       LQUERY = ( LWORK.EQ.-1 )
  325:       IF( .NOT.( NOSCL .OR. LSAME( BALANC,'S' ) .OR.
  326:      $    LSAME( BALANC, 'B' ) ) ) THEN
  327:          INFO = -1
  328:       ELSE IF( IJOBVL.LE.0 ) THEN
  329:          INFO = -2
  330:       ELSE IF( IJOBVR.LE.0 ) THEN
  331:          INFO = -3
  332:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
  333:      $          THEN
  334:          INFO = -4
  335:       ELSE IF( N.LT.0 ) THEN
  336:          INFO = -5
  337:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  338:          INFO = -7
  339:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  340:          INFO = -9
  341:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
  342:          INFO = -13
  343:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
  344:          INFO = -15
  345:       END IF
  346: *
  347: *     Compute workspace
  348: *      (Note: Comments in the code beginning "Workspace:" describe the
  349: *       minimal amount of workspace needed at that point in the code,
  350: *       as well as the preferred amount for good performance.
  351: *       NB refers to the optimal block size for the immediately
  352: *       following subroutine, as returned by ILAENV. The workspace is
  353: *       computed assuming ILO = 1 and IHI = N, the worst case.)
  354: *
  355:       IF( INFO.EQ.0 ) THEN
  356:          IF( N.EQ.0 ) THEN
  357:             MINWRK = 1
  358:             MAXWRK = 1
  359:          ELSE
  360:             MINWRK = 2*N
  361:             IF( WANTSE ) THEN
  362:                MINWRK = 4*N
  363:             ELSE IF( WANTSV .OR. WANTSB ) THEN
  364:                MINWRK = 2*N*( N + 1)
  365:             END IF
  366:             MAXWRK = MINWRK
  367:             MAXWRK = MAX( MAXWRK,
  368:      $                    N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
  369:             MAXWRK = MAX( MAXWRK,
  370:      $                    N + N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, 0 ) )
  371:             IF( ILVL ) THEN
  372:                MAXWRK = MAX( MAXWRK, N +
  373:      $                       N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, 0 ) )
  374:             END IF 
  375:          END IF
  376:          WORK( 1 ) = MAXWRK
  377: *
  378:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  379:             INFO = -25
  380:          END IF
  381:       END IF
  382: *
  383:       IF( INFO.NE.0 ) THEN
  384:          CALL XERBLA( 'ZGGEVX', -INFO )
  385:          RETURN
  386:       ELSE IF( LQUERY ) THEN
  387:          RETURN
  388:       END IF
  389: *
  390: *     Quick return if possible
  391: *
  392:       IF( N.EQ.0 )
  393:      $   RETURN
  394: *
  395: *     Get machine constants
  396: *
  397:       EPS = DLAMCH( 'P' )
  398:       SMLNUM = DLAMCH( 'S' )
  399:       BIGNUM = ONE / SMLNUM
  400:       CALL DLABAD( SMLNUM, BIGNUM )
  401:       SMLNUM = SQRT( SMLNUM ) / EPS
  402:       BIGNUM = ONE / SMLNUM
  403: *
  404: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  405: *
  406:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  407:       ILASCL = .FALSE.
  408:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  409:          ANRMTO = SMLNUM
  410:          ILASCL = .TRUE.
  411:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  412:          ANRMTO = BIGNUM
  413:          ILASCL = .TRUE.
  414:       END IF
  415:       IF( ILASCL )
  416:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  417: *
  418: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  419: *
  420:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  421:       ILBSCL = .FALSE.
  422:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  423:          BNRMTO = SMLNUM
  424:          ILBSCL = .TRUE.
  425:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  426:          BNRMTO = BIGNUM
  427:          ILBSCL = .TRUE.
  428:       END IF
  429:       IF( ILBSCL )
  430:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  431: *
  432: *     Permute and/or balance the matrix pair (A,B)
  433: *     (Real Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
  434: *
  435:       CALL ZGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
  436:      $             RWORK, IERR )
  437: *
  438: *     Compute ABNRM and BBNRM
  439: *
  440:       ABNRM = ZLANGE( '1', N, N, A, LDA, RWORK( 1 ) )
  441:       IF( ILASCL ) THEN
  442:          RWORK( 1 ) = ABNRM
  443:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, RWORK( 1 ), 1,
  444:      $                IERR )
  445:          ABNRM = RWORK( 1 )
  446:       END IF
  447: *
  448:       BBNRM = ZLANGE( '1', N, N, B, LDB, RWORK( 1 ) )
  449:       IF( ILBSCL ) THEN
  450:          RWORK( 1 ) = BBNRM
  451:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, RWORK( 1 ), 1,
  452:      $                IERR )
  453:          BBNRM = RWORK( 1 )
  454:       END IF
  455: *
  456: *     Reduce B to triangular form (QR decomposition of B)
  457: *     (Complex Workspace: need N, prefer N*NB )
  458: *
  459:       IROWS = IHI + 1 - ILO
  460:       IF( ILV .OR. .NOT.WANTSN ) THEN
  461:          ICOLS = N + 1 - ILO
  462:       ELSE
  463:          ICOLS = IROWS
  464:       END IF
  465:       ITAU = 1
  466:       IWRK = ITAU + IROWS
  467:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  468:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  469: *
  470: *     Apply the unitary transformation to A
  471: *     (Complex Workspace: need N, prefer N*NB)
  472: *
  473:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  474:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  475:      $             LWORK+1-IWRK, IERR )
  476: *
  477: *     Initialize VL and/or VR
  478: *     (Workspace: need N, prefer N*NB)
  479: *
  480:       IF( ILVL ) THEN
  481:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
  482:          IF( IROWS.GT.1 ) THEN
  483:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  484:      $                   VL( ILO+1, ILO ), LDVL )
  485:          END IF
  486:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
  487:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  488:       END IF
  489: *
  490:       IF( ILVR )
  491:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
  492: *
  493: *     Reduce to generalized Hessenberg form
  494: *     (Workspace: none needed)
  495: *
  496:       IF( ILV .OR. .NOT.WANTSN ) THEN
  497: *
  498: *        Eigenvectors requested -- work on whole matrix.
  499: *
  500:          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
  501:      $                LDVL, VR, LDVR, IERR )
  502:       ELSE
  503:          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
  504:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
  505:       END IF
  506: *
  507: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
  508: *     Schur forms and Schur vectors)
  509: *     (Complex Workspace: need N)
  510: *     (Real Workspace: need N)
  511: *
  512:       IWRK = ITAU
  513:       IF( ILV .OR. .NOT.WANTSN ) THEN
  514:          CHTEMP = 'S'
  515:       ELSE
  516:          CHTEMP = 'E'
  517:       END IF
  518: *
  519:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
  520:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
  521:      $             LWORK+1-IWRK, RWORK, IERR )
  522:       IF( IERR.NE.0 ) THEN
  523:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  524:             INFO = IERR
  525:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  526:             INFO = IERR - N
  527:          ELSE
  528:             INFO = N + 1
  529:          END IF
  530:          GO TO 90
  531:       END IF
  532: *
  533: *     Compute Eigenvectors and estimate condition numbers if desired
  534: *     ZTGEVC: (Complex Workspace: need 2*N )
  535: *             (Real Workspace:    need 2*N )
  536: *     ZTGSNA: (Complex Workspace: need 2*N*N if SENSE='V' or 'B')
  537: *             (Integer Workspace: need N+2 )
  538: *
  539:       IF( ILV .OR. .NOT.WANTSN ) THEN
  540:          IF( ILV ) THEN
  541:             IF( ILVL ) THEN
  542:                IF( ILVR ) THEN
  543:                   CHTEMP = 'B'
  544:                ELSE
  545:                   CHTEMP = 'L'
  546:                END IF
  547:             ELSE
  548:                CHTEMP = 'R'
  549:             END IF
  550: *
  551:             CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
  552:      $                   LDVL, VR, LDVR, N, IN, WORK( IWRK ), RWORK,
  553:      $                   IERR )
  554:             IF( IERR.NE.0 ) THEN
  555:                INFO = N + 2
  556:                GO TO 90
  557:             END IF
  558:          END IF
  559: *
  560:          IF( .NOT.WANTSN ) THEN
  561: *
  562: *           compute eigenvectors (DTGEVC) and estimate condition
  563: *           numbers (DTGSNA). Note that the definition of the condition
  564: *           number is not invariant under transformation (u,v) to
  565: *           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
  566: *           Schur form (S,T), Q and Z are orthogonal matrices. In order
  567: *           to avoid using extra 2*N*N workspace, we have to
  568: *           re-calculate eigenvectors and estimate the condition numbers
  569: *           one at a time.
  570: *
  571:             DO 20 I = 1, N
  572: *
  573:                DO 10 J = 1, N
  574:                   BWORK( J ) = .FALSE.
  575:    10          CONTINUE
  576:                BWORK( I ) = .TRUE.
  577: *
  578:                IWRK = N + 1
  579:                IWRK1 = IWRK + N
  580: *
  581:                IF( WANTSE .OR. WANTSB ) THEN
  582:                   CALL ZTGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
  583:      $                         WORK( 1 ), N, WORK( IWRK ), N, 1, M,
  584:      $                         WORK( IWRK1 ), RWORK, IERR )
  585:                   IF( IERR.NE.0 ) THEN
  586:                      INFO = N + 2
  587:                      GO TO 90
  588:                   END IF
  589:                END IF
  590: *
  591:                CALL ZTGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
  592:      $                      WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
  593:      $                      RCONDV( I ), 1, M, WORK( IWRK1 ),
  594:      $                      LWORK-IWRK1+1, IWORK, IERR )
  595: *
  596:    20       CONTINUE
  597:          END IF
  598:       END IF
  599: *
  600: *     Undo balancing on VL and VR and normalization
  601: *     (Workspace: none needed)
  602: *
  603:       IF( ILVL ) THEN
  604:          CALL ZGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
  605:      $                LDVL, IERR )
  606: *
  607:          DO 50 JC = 1, N
  608:             TEMP = ZERO
  609:             DO 30 JR = 1, N
  610:                TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
  611:    30       CONTINUE
  612:             IF( TEMP.LT.SMLNUM )
  613:      $         GO TO 50
  614:             TEMP = ONE / TEMP
  615:             DO 40 JR = 1, N
  616:                VL( JR, JC ) = VL( JR, JC )*TEMP
  617:    40       CONTINUE
  618:    50    CONTINUE
  619:       END IF
  620: *
  621:       IF( ILVR ) THEN
  622:          CALL ZGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
  623:      $                LDVR, IERR )
  624:          DO 80 JC = 1, N
  625:             TEMP = ZERO
  626:             DO 60 JR = 1, N
  627:                TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
  628:    60       CONTINUE
  629:             IF( TEMP.LT.SMLNUM )
  630:      $         GO TO 80
  631:             TEMP = ONE / TEMP
  632:             DO 70 JR = 1, N
  633:                VR( JR, JC ) = VR( JR, JC )*TEMP
  634:    70       CONTINUE
  635:    80    CONTINUE
  636:       END IF
  637: *
  638: *     Undo scaling if necessary
  639: *
  640:       IF( ILASCL )
  641:      $   CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
  642: *
  643:       IF( ILBSCL )
  644:      $   CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  645: *
  646:    90 CONTINUE
  647:       WORK( 1 ) = MAXWRK
  648: *
  649:       RETURN
  650: *
  651: *     End of ZGGEVX
  652: *
  653:       END

CVSweb interface <joel.bertrand@systella.fr>