Annotation of rpl/lapack/lapack/zggevx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
        !             2:      $                   ALPHA, BETA, VL, LDVL, VR, LDVR, ILO, IHI,
        !             3:      $                   LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV,
        !             4:      $                   WORK, LWORK, RWORK, IWORK, BWORK, INFO )
        !             5: *
        !             6: *  -- LAPACK driver routine (version 3.2) --
        !             7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             9: *     November 2006
        !            10: *
        !            11: *     .. Scalar Arguments ..
        !            12:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
        !            13:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
        !            14:       DOUBLE PRECISION   ABNRM, BBNRM
        !            15: *     ..
        !            16: *     .. Array Arguments ..
        !            17:       LOGICAL            BWORK( * )
        !            18:       INTEGER            IWORK( * )
        !            19:       DOUBLE PRECISION   LSCALE( * ), RCONDE( * ), RCONDV( * ),
        !            20:      $                   RSCALE( * ), RWORK( * )
        !            21:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
        !            22:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
        !            23:      $                   WORK( * )
        !            24: *     ..
        !            25: *
        !            26: *  Purpose
        !            27: *  =======
        !            28: *
        !            29: *  ZGGEVX computes for a pair of N-by-N complex nonsymmetric matrices
        !            30: *  (A,B) the generalized eigenvalues, and optionally, the left and/or
        !            31: *  right generalized eigenvectors.
        !            32: *
        !            33: *  Optionally, it also computes a balancing transformation to improve
        !            34: *  the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
        !            35: *  LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
        !            36: *  the eigenvalues (RCONDE), and reciprocal condition numbers for the
        !            37: *  right eigenvectors (RCONDV).
        !            38: *
        !            39: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar
        !            40: *  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
        !            41: *  singular. It is usually represented as the pair (alpha,beta), as
        !            42: *  there is a reasonable interpretation for beta=0, and even for both
        !            43: *  being zero.
        !            44: *
        !            45: *  The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
        !            46: *  of (A,B) satisfies
        !            47: *                   A * v(j) = lambda(j) * B * v(j) .
        !            48: *  The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
        !            49: *  of (A,B) satisfies
        !            50: *                   u(j)**H * A  = lambda(j) * u(j)**H * B.
        !            51: *  where u(j)**H is the conjugate-transpose of u(j).
        !            52: *
        !            53: *
        !            54: *  Arguments
        !            55: *  =========
        !            56: *
        !            57: *  BALANC  (input) CHARACTER*1
        !            58: *          Specifies the balance option to be performed:
        !            59: *          = 'N':  do not diagonally scale or permute;
        !            60: *          = 'P':  permute only;
        !            61: *          = 'S':  scale only;
        !            62: *          = 'B':  both permute and scale.
        !            63: *          Computed reciprocal condition numbers will be for the
        !            64: *          matrices after permuting and/or balancing. Permuting does
        !            65: *          not change condition numbers (in exact arithmetic), but
        !            66: *          balancing does.
        !            67: *
        !            68: *  JOBVL   (input) CHARACTER*1
        !            69: *          = 'N':  do not compute the left generalized eigenvectors;
        !            70: *          = 'V':  compute the left generalized eigenvectors.
        !            71: *
        !            72: *  JOBVR   (input) CHARACTER*1
        !            73: *          = 'N':  do not compute the right generalized eigenvectors;
        !            74: *          = 'V':  compute the right generalized eigenvectors.
        !            75: *
        !            76: *  SENSE   (input) CHARACTER*1
        !            77: *          Determines which reciprocal condition numbers are computed.
        !            78: *          = 'N': none are computed;
        !            79: *          = 'E': computed for eigenvalues only;
        !            80: *          = 'V': computed for eigenvectors only;
        !            81: *          = 'B': computed for eigenvalues and eigenvectors.
        !            82: *
        !            83: *  N       (input) INTEGER
        !            84: *          The order of the matrices A, B, VL, and VR.  N >= 0.
        !            85: *
        !            86: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
        !            87: *          On entry, the matrix A in the pair (A,B).
        !            88: *          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
        !            89: *          or both, then A contains the first part of the complex Schur
        !            90: *          form of the "balanced" versions of the input A and B.
        !            91: *
        !            92: *  LDA     (input) INTEGER
        !            93: *          The leading dimension of A.  LDA >= max(1,N).
        !            94: *
        !            95: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
        !            96: *          On entry, the matrix B in the pair (A,B).
        !            97: *          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
        !            98: *          or both, then B contains the second part of the complex
        !            99: *          Schur form of the "balanced" versions of the input A and B.
        !           100: *
        !           101: *  LDB     (input) INTEGER
        !           102: *          The leading dimension of B.  LDB >= max(1,N).
        !           103: *
        !           104: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
        !           105: *  BETA    (output) COMPLEX*16 array, dimension (N)
        !           106: *          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized
        !           107: *          eigenvalues.
        !           108: *
        !           109: *          Note: the quotient ALPHA(j)/BETA(j) ) may easily over- or
        !           110: *          underflow, and BETA(j) may even be zero.  Thus, the user
        !           111: *          should avoid naively computing the ratio ALPHA/BETA.
        !           112: *          However, ALPHA will be always less than and usually
        !           113: *          comparable with norm(A) in magnitude, and BETA always less
        !           114: *          than and usually comparable with norm(B).
        !           115: *
        !           116: *  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
        !           117: *          If JOBVL = 'V', the left generalized eigenvectors u(j) are
        !           118: *          stored one after another in the columns of VL, in the same
        !           119: *          order as their eigenvalues.
        !           120: *          Each eigenvector will be scaled so the largest component
        !           121: *          will have abs(real part) + abs(imag. part) = 1.
        !           122: *          Not referenced if JOBVL = 'N'.
        !           123: *
        !           124: *  LDVL    (input) INTEGER
        !           125: *          The leading dimension of the matrix VL. LDVL >= 1, and
        !           126: *          if JOBVL = 'V', LDVL >= N.
        !           127: *
        !           128: *  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
        !           129: *          If JOBVR = 'V', the right generalized eigenvectors v(j) are
        !           130: *          stored one after another in the columns of VR, in the same
        !           131: *          order as their eigenvalues.
        !           132: *          Each eigenvector will be scaled so the largest component
        !           133: *          will have abs(real part) + abs(imag. part) = 1.
        !           134: *          Not referenced if JOBVR = 'N'.
        !           135: *
        !           136: *  LDVR    (input) INTEGER
        !           137: *          The leading dimension of the matrix VR. LDVR >= 1, and
        !           138: *          if JOBVR = 'V', LDVR >= N.
        !           139: *
        !           140: *  ILO     (output) INTEGER
        !           141: *  IHI     (output) INTEGER
        !           142: *          ILO and IHI are integer values such that on exit
        !           143: *          A(i,j) = 0 and B(i,j) = 0 if i > j and
        !           144: *          j = 1,...,ILO-1 or i = IHI+1,...,N.
        !           145: *          If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
        !           146: *
        !           147: *  LSCALE  (output) DOUBLE PRECISION array, dimension (N)
        !           148: *          Details of the permutations and scaling factors applied
        !           149: *          to the left side of A and B.  If PL(j) is the index of the
        !           150: *          row interchanged with row j, and DL(j) is the scaling
        !           151: *          factor applied to row j, then
        !           152: *            LSCALE(j) = PL(j)  for j = 1,...,ILO-1
        !           153: *                      = DL(j)  for j = ILO,...,IHI
        !           154: *                      = PL(j)  for j = IHI+1,...,N.
        !           155: *          The order in which the interchanges are made is N to IHI+1,
        !           156: *          then 1 to ILO-1.
        !           157: *
        !           158: *  RSCALE  (output) DOUBLE PRECISION array, dimension (N)
        !           159: *          Details of the permutations and scaling factors applied
        !           160: *          to the right side of A and B.  If PR(j) is the index of the
        !           161: *          column interchanged with column j, and DR(j) is the scaling
        !           162: *          factor applied to column j, then
        !           163: *            RSCALE(j) = PR(j)  for j = 1,...,ILO-1
        !           164: *                      = DR(j)  for j = ILO,...,IHI
        !           165: *                      = PR(j)  for j = IHI+1,...,N
        !           166: *          The order in which the interchanges are made is N to IHI+1,
        !           167: *          then 1 to ILO-1.
        !           168: *
        !           169: *  ABNRM   (output) DOUBLE PRECISION
        !           170: *          The one-norm of the balanced matrix A.
        !           171: *
        !           172: *  BBNRM   (output) DOUBLE PRECISION
        !           173: *          The one-norm of the balanced matrix B.
        !           174: *
        !           175: *  RCONDE  (output) DOUBLE PRECISION array, dimension (N)
        !           176: *          If SENSE = 'E' or 'B', the reciprocal condition numbers of
        !           177: *          the eigenvalues, stored in consecutive elements of the array.
        !           178: *          If SENSE = 'N' or 'V', RCONDE is not referenced.
        !           179: *
        !           180: *  RCONDV  (output) DOUBLE PRECISION array, dimension (N)
        !           181: *          If JOB = 'V' or 'B', the estimated reciprocal condition
        !           182: *          numbers of the eigenvectors, stored in consecutive elements
        !           183: *          of the array. If the eigenvalues cannot be reordered to
        !           184: *          compute RCONDV(j), RCONDV(j) is set to 0; this can only occur
        !           185: *          when the true value would be very small anyway.
        !           186: *          If SENSE = 'N' or 'E', RCONDV is not referenced.
        !           187: *
        !           188: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           189: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           190: *
        !           191: *  LWORK   (input) INTEGER
        !           192: *          The dimension of the array WORK. LWORK >= max(1,2*N).
        !           193: *          If SENSE = 'E', LWORK >= max(1,4*N).
        !           194: *          If SENSE = 'V' or 'B', LWORK >= max(1,2*N*N+2*N).
        !           195: *
        !           196: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           197: *          only calculates the optimal size of the WORK array, returns
        !           198: *          this value as the first entry of the WORK array, and no error
        !           199: *          message related to LWORK is issued by XERBLA.
        !           200: *
        !           201: *  RWORK   (workspace) REAL array, dimension (lrwork)
        !           202: *          lrwork must be at least max(1,6*N) if BALANC = 'S' or 'B',
        !           203: *          and at least max(1,2*N) otherwise.
        !           204: *          Real workspace.
        !           205: *
        !           206: *  IWORK   (workspace) INTEGER array, dimension (N+2)
        !           207: *          If SENSE = 'E', IWORK is not referenced.
        !           208: *
        !           209: *  BWORK   (workspace) LOGICAL array, dimension (N)
        !           210: *          If SENSE = 'N', BWORK is not referenced.
        !           211: *
        !           212: *  INFO    (output) INTEGER
        !           213: *          = 0:  successful exit
        !           214: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           215: *          = 1,...,N:
        !           216: *                The QZ iteration failed.  No eigenvectors have been
        !           217: *                calculated, but ALPHA(j) and BETA(j) should be correct
        !           218: *                for j=INFO+1,...,N.
        !           219: *          > N:  =N+1: other than QZ iteration failed in ZHGEQZ.
        !           220: *                =N+2: error return from ZTGEVC.
        !           221: *
        !           222: *  Further Details
        !           223: *  ===============
        !           224: *
        !           225: *  Balancing a matrix pair (A,B) includes, first, permuting rows and
        !           226: *  columns to isolate eigenvalues, second, applying diagonal similarity
        !           227: *  transformation to the rows and columns to make the rows and columns
        !           228: *  as close in norm as possible. The computed reciprocal condition
        !           229: *  numbers correspond to the balanced matrix. Permuting rows and columns
        !           230: *  will not change the condition numbers (in exact arithmetic) but
        !           231: *  diagonal scaling will.  For further explanation of balancing, see
        !           232: *  section 4.11.1.2 of LAPACK Users' Guide.
        !           233: *
        !           234: *  An approximate error bound on the chordal distance between the i-th
        !           235: *  computed generalized eigenvalue w and the corresponding exact
        !           236: *  eigenvalue lambda is
        !           237: *
        !           238: *       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
        !           239: *
        !           240: *  An approximate error bound for the angle between the i-th computed
        !           241: *  eigenvector VL(i) or VR(i) is given by
        !           242: *
        !           243: *       EPS * norm(ABNRM, BBNRM) / DIF(i).
        !           244: *
        !           245: *  For further explanation of the reciprocal condition numbers RCONDE
        !           246: *  and RCONDV, see section 4.11 of LAPACK User's Guide.
        !           247: *
        !           248: *     .. Parameters ..
        !           249:       DOUBLE PRECISION   ZERO, ONE
        !           250:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           251:       COMPLEX*16         CZERO, CONE
        !           252:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
        !           253:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
        !           254: *     ..
        !           255: *     .. Local Scalars ..
        !           256:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
        !           257:      $                   WANTSB, WANTSE, WANTSN, WANTSV
        !           258:       CHARACTER          CHTEMP
        !           259:       INTEGER            I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
        !           260:      $                   ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK, MINWRK
        !           261:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
        !           262:      $                   SMLNUM, TEMP
        !           263:       COMPLEX*16         X
        !           264: *     ..
        !           265: *     .. Local Arrays ..
        !           266:       LOGICAL            LDUMMA( 1 )
        !           267: *     ..
        !           268: *     .. External Subroutines ..
        !           269:       EXTERNAL           DLABAD, DLASCL, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL,
        !           270:      $                   ZGGHRD, ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGEVC,
        !           271:      $                   ZTGSNA, ZUNGQR, ZUNMQR
        !           272: *     ..
        !           273: *     .. External Functions ..
        !           274:       LOGICAL            LSAME
        !           275:       INTEGER            ILAENV
        !           276:       DOUBLE PRECISION   DLAMCH, ZLANGE
        !           277:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
        !           278: *     ..
        !           279: *     .. Intrinsic Functions ..
        !           280:       INTRINSIC          ABS, DBLE, DIMAG, MAX, SQRT
        !           281: *     ..
        !           282: *     .. Statement Functions ..
        !           283:       DOUBLE PRECISION   ABS1
        !           284: *     ..
        !           285: *     .. Statement Function definitions ..
        !           286:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
        !           287: *     ..
        !           288: *     .. Executable Statements ..
        !           289: *
        !           290: *     Decode the input arguments
        !           291: *
        !           292:       IF( LSAME( JOBVL, 'N' ) ) THEN
        !           293:          IJOBVL = 1
        !           294:          ILVL = .FALSE.
        !           295:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
        !           296:          IJOBVL = 2
        !           297:          ILVL = .TRUE.
        !           298:       ELSE
        !           299:          IJOBVL = -1
        !           300:          ILVL = .FALSE.
        !           301:       END IF
        !           302: *
        !           303:       IF( LSAME( JOBVR, 'N' ) ) THEN
        !           304:          IJOBVR = 1
        !           305:          ILVR = .FALSE.
        !           306:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
        !           307:          IJOBVR = 2
        !           308:          ILVR = .TRUE.
        !           309:       ELSE
        !           310:          IJOBVR = -1
        !           311:          ILVR = .FALSE.
        !           312:       END IF
        !           313:       ILV = ILVL .OR. ILVR
        !           314: *
        !           315:       NOSCL  = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
        !           316:       WANTSN = LSAME( SENSE, 'N' )
        !           317:       WANTSE = LSAME( SENSE, 'E' )
        !           318:       WANTSV = LSAME( SENSE, 'V' )
        !           319:       WANTSB = LSAME( SENSE, 'B' )
        !           320: *
        !           321: *     Test the input arguments
        !           322: *
        !           323:       INFO = 0
        !           324:       LQUERY = ( LWORK.EQ.-1 )
        !           325:       IF( .NOT.( NOSCL .OR. LSAME( BALANC,'S' ) .OR.
        !           326:      $    LSAME( BALANC, 'B' ) ) ) THEN
        !           327:          INFO = -1
        !           328:       ELSE IF( IJOBVL.LE.0 ) THEN
        !           329:          INFO = -2
        !           330:       ELSE IF( IJOBVR.LE.0 ) THEN
        !           331:          INFO = -3
        !           332:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
        !           333:      $          THEN
        !           334:          INFO = -4
        !           335:       ELSE IF( N.LT.0 ) THEN
        !           336:          INFO = -5
        !           337:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           338:          INFO = -7
        !           339:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           340:          INFO = -9
        !           341:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
        !           342:          INFO = -13
        !           343:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
        !           344:          INFO = -15
        !           345:       END IF
        !           346: *
        !           347: *     Compute workspace
        !           348: *      (Note: Comments in the code beginning "Workspace:" describe the
        !           349: *       minimal amount of workspace needed at that point in the code,
        !           350: *       as well as the preferred amount for good performance.
        !           351: *       NB refers to the optimal block size for the immediately
        !           352: *       following subroutine, as returned by ILAENV. The workspace is
        !           353: *       computed assuming ILO = 1 and IHI = N, the worst case.)
        !           354: *
        !           355:       IF( INFO.EQ.0 ) THEN
        !           356:          IF( N.EQ.0 ) THEN
        !           357:             MINWRK = 1
        !           358:             MAXWRK = 1
        !           359:          ELSE
        !           360:             MINWRK = 2*N
        !           361:             IF( WANTSE ) THEN
        !           362:                MINWRK = 4*N
        !           363:             ELSE IF( WANTSV .OR. WANTSB ) THEN
        !           364:                MINWRK = 2*N*( N + 1)
        !           365:             END IF
        !           366:             MAXWRK = MINWRK
        !           367:             MAXWRK = MAX( MAXWRK,
        !           368:      $                    N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
        !           369:             MAXWRK = MAX( MAXWRK,
        !           370:      $                    N + N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, 0 ) )
        !           371:             IF( ILVL ) THEN
        !           372:                MAXWRK = MAX( MAXWRK, N +
        !           373:      $                       N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, 0 ) )
        !           374:             END IF 
        !           375:          END IF
        !           376:          WORK( 1 ) = MAXWRK
        !           377: *
        !           378:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
        !           379:             INFO = -25
        !           380:          END IF
        !           381:       END IF
        !           382: *
        !           383:       IF( INFO.NE.0 ) THEN
        !           384:          CALL XERBLA( 'ZGGEVX', -INFO )
        !           385:          RETURN
        !           386:       ELSE IF( LQUERY ) THEN
        !           387:          RETURN
        !           388:       END IF
        !           389: *
        !           390: *     Quick return if possible
        !           391: *
        !           392:       IF( N.EQ.0 )
        !           393:      $   RETURN
        !           394: *
        !           395: *     Get machine constants
        !           396: *
        !           397:       EPS = DLAMCH( 'P' )
        !           398:       SMLNUM = DLAMCH( 'S' )
        !           399:       BIGNUM = ONE / SMLNUM
        !           400:       CALL DLABAD( SMLNUM, BIGNUM )
        !           401:       SMLNUM = SQRT( SMLNUM ) / EPS
        !           402:       BIGNUM = ONE / SMLNUM
        !           403: *
        !           404: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           405: *
        !           406:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
        !           407:       ILASCL = .FALSE.
        !           408:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           409:          ANRMTO = SMLNUM
        !           410:          ILASCL = .TRUE.
        !           411:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           412:          ANRMTO = BIGNUM
        !           413:          ILASCL = .TRUE.
        !           414:       END IF
        !           415:       IF( ILASCL )
        !           416:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
        !           417: *
        !           418: *     Scale B if max element outside range [SMLNUM,BIGNUM]
        !           419: *
        !           420:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
        !           421:       ILBSCL = .FALSE.
        !           422:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           423:          BNRMTO = SMLNUM
        !           424:          ILBSCL = .TRUE.
        !           425:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           426:          BNRMTO = BIGNUM
        !           427:          ILBSCL = .TRUE.
        !           428:       END IF
        !           429:       IF( ILBSCL )
        !           430:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
        !           431: *
        !           432: *     Permute and/or balance the matrix pair (A,B)
        !           433: *     (Real Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
        !           434: *
        !           435:       CALL ZGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
        !           436:      $             RWORK, IERR )
        !           437: *
        !           438: *     Compute ABNRM and BBNRM
        !           439: *
        !           440:       ABNRM = ZLANGE( '1', N, N, A, LDA, RWORK( 1 ) )
        !           441:       IF( ILASCL ) THEN
        !           442:          RWORK( 1 ) = ABNRM
        !           443:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, RWORK( 1 ), 1,
        !           444:      $                IERR )
        !           445:          ABNRM = RWORK( 1 )
        !           446:       END IF
        !           447: *
        !           448:       BBNRM = ZLANGE( '1', N, N, B, LDB, RWORK( 1 ) )
        !           449:       IF( ILBSCL ) THEN
        !           450:          RWORK( 1 ) = BBNRM
        !           451:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, RWORK( 1 ), 1,
        !           452:      $                IERR )
        !           453:          BBNRM = RWORK( 1 )
        !           454:       END IF
        !           455: *
        !           456: *     Reduce B to triangular form (QR decomposition of B)
        !           457: *     (Complex Workspace: need N, prefer N*NB )
        !           458: *
        !           459:       IROWS = IHI + 1 - ILO
        !           460:       IF( ILV .OR. .NOT.WANTSN ) THEN
        !           461:          ICOLS = N + 1 - ILO
        !           462:       ELSE
        !           463:          ICOLS = IROWS
        !           464:       END IF
        !           465:       ITAU = 1
        !           466:       IWRK = ITAU + IROWS
        !           467:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
        !           468:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           469: *
        !           470: *     Apply the unitary transformation to A
        !           471: *     (Complex Workspace: need N, prefer N*NB)
        !           472: *
        !           473:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
        !           474:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
        !           475:      $             LWORK+1-IWRK, IERR )
        !           476: *
        !           477: *     Initialize VL and/or VR
        !           478: *     (Workspace: need N, prefer N*NB)
        !           479: *
        !           480:       IF( ILVL ) THEN
        !           481:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
        !           482:          IF( IROWS.GT.1 ) THEN
        !           483:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
        !           484:      $                   VL( ILO+1, ILO ), LDVL )
        !           485:          END IF
        !           486:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
        !           487:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           488:       END IF
        !           489: *
        !           490:       IF( ILVR )
        !           491:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
        !           492: *
        !           493: *     Reduce to generalized Hessenberg form
        !           494: *     (Workspace: none needed)
        !           495: *
        !           496:       IF( ILV .OR. .NOT.WANTSN ) THEN
        !           497: *
        !           498: *        Eigenvectors requested -- work on whole matrix.
        !           499: *
        !           500:          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
        !           501:      $                LDVL, VR, LDVR, IERR )
        !           502:       ELSE
        !           503:          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
        !           504:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
        !           505:       END IF
        !           506: *
        !           507: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
        !           508: *     Schur forms and Schur vectors)
        !           509: *     (Complex Workspace: need N)
        !           510: *     (Real Workspace: need N)
        !           511: *
        !           512:       IWRK = ITAU
        !           513:       IF( ILV .OR. .NOT.WANTSN ) THEN
        !           514:          CHTEMP = 'S'
        !           515:       ELSE
        !           516:          CHTEMP = 'E'
        !           517:       END IF
        !           518: *
        !           519:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
        !           520:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ),
        !           521:      $             LWORK+1-IWRK, RWORK, IERR )
        !           522:       IF( IERR.NE.0 ) THEN
        !           523:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
        !           524:             INFO = IERR
        !           525:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
        !           526:             INFO = IERR - N
        !           527:          ELSE
        !           528:             INFO = N + 1
        !           529:          END IF
        !           530:          GO TO 90
        !           531:       END IF
        !           532: *
        !           533: *     Compute Eigenvectors and estimate condition numbers if desired
        !           534: *     ZTGEVC: (Complex Workspace: need 2*N )
        !           535: *             (Real Workspace:    need 2*N )
        !           536: *     ZTGSNA: (Complex Workspace: need 2*N*N if SENSE='V' or 'B')
        !           537: *             (Integer Workspace: need N+2 )
        !           538: *
        !           539:       IF( ILV .OR. .NOT.WANTSN ) THEN
        !           540:          IF( ILV ) THEN
        !           541:             IF( ILVL ) THEN
        !           542:                IF( ILVR ) THEN
        !           543:                   CHTEMP = 'B'
        !           544:                ELSE
        !           545:                   CHTEMP = 'L'
        !           546:                END IF
        !           547:             ELSE
        !           548:                CHTEMP = 'R'
        !           549:             END IF
        !           550: *
        !           551:             CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
        !           552:      $                   LDVL, VR, LDVR, N, IN, WORK( IWRK ), RWORK,
        !           553:      $                   IERR )
        !           554:             IF( IERR.NE.0 ) THEN
        !           555:                INFO = N + 2
        !           556:                GO TO 90
        !           557:             END IF
        !           558:          END IF
        !           559: *
        !           560:          IF( .NOT.WANTSN ) THEN
        !           561: *
        !           562: *           compute eigenvectors (DTGEVC) and estimate condition
        !           563: *           numbers (DTGSNA). Note that the definition of the condition
        !           564: *           number is not invariant under transformation (u,v) to
        !           565: *           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
        !           566: *           Schur form (S,T), Q and Z are orthogonal matrices. In order
        !           567: *           to avoid using extra 2*N*N workspace, we have to
        !           568: *           re-calculate eigenvectors and estimate the condition numbers
        !           569: *           one at a time.
        !           570: *
        !           571:             DO 20 I = 1, N
        !           572: *
        !           573:                DO 10 J = 1, N
        !           574:                   BWORK( J ) = .FALSE.
        !           575:    10          CONTINUE
        !           576:                BWORK( I ) = .TRUE.
        !           577: *
        !           578:                IWRK = N + 1
        !           579:                IWRK1 = IWRK + N
        !           580: *
        !           581:                IF( WANTSE .OR. WANTSB ) THEN
        !           582:                   CALL ZTGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
        !           583:      $                         WORK( 1 ), N, WORK( IWRK ), N, 1, M,
        !           584:      $                         WORK( IWRK1 ), RWORK, IERR )
        !           585:                   IF( IERR.NE.0 ) THEN
        !           586:                      INFO = N + 2
        !           587:                      GO TO 90
        !           588:                   END IF
        !           589:                END IF
        !           590: *
        !           591:                CALL ZTGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
        !           592:      $                      WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
        !           593:      $                      RCONDV( I ), 1, M, WORK( IWRK1 ),
        !           594:      $                      LWORK-IWRK1+1, IWORK, IERR )
        !           595: *
        !           596:    20       CONTINUE
        !           597:          END IF
        !           598:       END IF
        !           599: *
        !           600: *     Undo balancing on VL and VR and normalization
        !           601: *     (Workspace: none needed)
        !           602: *
        !           603:       IF( ILVL ) THEN
        !           604:          CALL ZGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
        !           605:      $                LDVL, IERR )
        !           606: *
        !           607:          DO 50 JC = 1, N
        !           608:             TEMP = ZERO
        !           609:             DO 30 JR = 1, N
        !           610:                TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
        !           611:    30       CONTINUE
        !           612:             IF( TEMP.LT.SMLNUM )
        !           613:      $         GO TO 50
        !           614:             TEMP = ONE / TEMP
        !           615:             DO 40 JR = 1, N
        !           616:                VL( JR, JC ) = VL( JR, JC )*TEMP
        !           617:    40       CONTINUE
        !           618:    50    CONTINUE
        !           619:       END IF
        !           620: *
        !           621:       IF( ILVR ) THEN
        !           622:          CALL ZGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
        !           623:      $                LDVR, IERR )
        !           624:          DO 80 JC = 1, N
        !           625:             TEMP = ZERO
        !           626:             DO 60 JR = 1, N
        !           627:                TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
        !           628:    60       CONTINUE
        !           629:             IF( TEMP.LT.SMLNUM )
        !           630:      $         GO TO 80
        !           631:             TEMP = ONE / TEMP
        !           632:             DO 70 JR = 1, N
        !           633:                VR( JR, JC ) = VR( JR, JC )*TEMP
        !           634:    70       CONTINUE
        !           635:    80    CONTINUE
        !           636:       END IF
        !           637: *
        !           638: *     Undo scaling if necessary
        !           639: *
        !           640:       IF( ILASCL )
        !           641:      $   CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
        !           642: *
        !           643:       IF( ILBSCL )
        !           644:      $   CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
        !           645: *
        !           646:    90 CONTINUE
        !           647:       WORK( 1 ) = MAXWRK
        !           648: *
        !           649:       RETURN
        !           650: *
        !           651: *     End of ZGGEVX
        !           652: *
        !           653:       END

CVSweb interface <joel.bertrand@systella.fr>