File:  [local] / rpl / lapack / lapack / zgges.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
    2:      $                  SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
    3:      $                  LWORK, RWORK, BWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBVSL, JOBVSR, SORT
   12:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
   13: *     ..
   14: *     .. Array Arguments ..
   15:       LOGICAL            BWORK( * )
   16:       DOUBLE PRECISION   RWORK( * )
   17:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
   18:      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
   19:      $                   WORK( * )
   20: *     ..
   21: *     .. Function Arguments ..
   22:       LOGICAL            SELCTG
   23:       EXTERNAL           SELCTG
   24: *     ..
   25: *
   26: *  Purpose
   27: *  =======
   28: *
   29: *  ZGGES computes for a pair of N-by-N complex nonsymmetric matrices
   30: *  (A,B), the generalized eigenvalues, the generalized complex Schur
   31: *  form (S, T), and optionally left and/or right Schur vectors (VSL
   32: *  and VSR). This gives the generalized Schur factorization
   33: *
   34: *          (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
   35: *
   36: *  where (VSR)**H is the conjugate-transpose of VSR.
   37: *
   38: *  Optionally, it also orders the eigenvalues so that a selected cluster
   39: *  of eigenvalues appears in the leading diagonal blocks of the upper
   40: *  triangular matrix S and the upper triangular matrix T. The leading
   41: *  columns of VSL and VSR then form an unitary basis for the
   42: *  corresponding left and right eigenspaces (deflating subspaces).
   43: *
   44: *  (If only the generalized eigenvalues are needed, use the driver
   45: *  ZGGEV instead, which is faster.)
   46: *
   47: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
   48: *  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
   49: *  usually represented as the pair (alpha,beta), as there is a
   50: *  reasonable interpretation for beta=0, and even for both being zero.
   51: *
   52: *  A pair of matrices (S,T) is in generalized complex Schur form if S
   53: *  and T are upper triangular and, in addition, the diagonal elements
   54: *  of T are non-negative real numbers.
   55: *
   56: *  Arguments
   57: *  =========
   58: *
   59: *  JOBVSL  (input) CHARACTER*1
   60: *          = 'N':  do not compute the left Schur vectors;
   61: *          = 'V':  compute the left Schur vectors.
   62: *
   63: *  JOBVSR  (input) CHARACTER*1
   64: *          = 'N':  do not compute the right Schur vectors;
   65: *          = 'V':  compute the right Schur vectors.
   66: *
   67: *  SORT    (input) CHARACTER*1
   68: *          Specifies whether or not to order the eigenvalues on the
   69: *          diagonal of the generalized Schur form.
   70: *          = 'N':  Eigenvalues are not ordered;
   71: *          = 'S':  Eigenvalues are ordered (see SELCTG).
   72: *
   73: *  SELCTG  (external procedure) LOGICAL FUNCTION of two COMPLEX*16 arguments
   74: *          SELCTG must be declared EXTERNAL in the calling subroutine.
   75: *          If SORT = 'N', SELCTG is not referenced.
   76: *          If SORT = 'S', SELCTG is used to select eigenvalues to sort
   77: *          to the top left of the Schur form.
   78: *          An eigenvalue ALPHA(j)/BETA(j) is selected if
   79: *          SELCTG(ALPHA(j),BETA(j)) is true.
   80: *
   81: *          Note that a selected complex eigenvalue may no longer satisfy
   82: *          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
   83: *          ordering may change the value of complex eigenvalues
   84: *          (especially if the eigenvalue is ill-conditioned), in this
   85: *          case INFO is set to N+2 (See INFO below).
   86: *
   87: *  N       (input) INTEGER
   88: *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
   89: *
   90: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
   91: *          On entry, the first of the pair of matrices.
   92: *          On exit, A has been overwritten by its generalized Schur
   93: *          form S.
   94: *
   95: *  LDA     (input) INTEGER
   96: *          The leading dimension of A.  LDA >= max(1,N).
   97: *
   98: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
   99: *          On entry, the second of the pair of matrices.
  100: *          On exit, B has been overwritten by its generalized Schur
  101: *          form T.
  102: *
  103: *  LDB     (input) INTEGER
  104: *          The leading dimension of B.  LDB >= max(1,N).
  105: *
  106: *  SDIM    (output) INTEGER
  107: *          If SORT = 'N', SDIM = 0.
  108: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
  109: *          for which SELCTG is true.
  110: *
  111: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
  112: *  BETA    (output) COMPLEX*16 array, dimension (N)
  113: *          On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
  114: *          generalized eigenvalues.  ALPHA(j), j=1,...,N  and  BETA(j),
  115: *          j=1,...,N  are the diagonals of the complex Schur form (A,B)
  116: *          output by ZGGES. The  BETA(j) will be non-negative real.
  117: *
  118: *          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
  119: *          underflow, and BETA(j) may even be zero.  Thus, the user
  120: *          should avoid naively computing the ratio alpha/beta.
  121: *          However, ALPHA will be always less than and usually
  122: *          comparable with norm(A) in magnitude, and BETA always less
  123: *          than and usually comparable with norm(B).
  124: *
  125: *  VSL     (output) COMPLEX*16 array, dimension (LDVSL,N)
  126: *          If JOBVSL = 'V', VSL will contain the left Schur vectors.
  127: *          Not referenced if JOBVSL = 'N'.
  128: *
  129: *  LDVSL   (input) INTEGER
  130: *          The leading dimension of the matrix VSL. LDVSL >= 1, and
  131: *          if JOBVSL = 'V', LDVSL >= N.
  132: *
  133: *  VSR     (output) COMPLEX*16 array, dimension (LDVSR,N)
  134: *          If JOBVSR = 'V', VSR will contain the right Schur vectors.
  135: *          Not referenced if JOBVSR = 'N'.
  136: *
  137: *  LDVSR   (input) INTEGER
  138: *          The leading dimension of the matrix VSR. LDVSR >= 1, and
  139: *          if JOBVSR = 'V', LDVSR >= N.
  140: *
  141: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
  142: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  143: *
  144: *  LWORK   (input) INTEGER
  145: *          The dimension of the array WORK.  LWORK >= max(1,2*N).
  146: *          For good performance, LWORK must generally be larger.
  147: *
  148: *          If LWORK = -1, then a workspace query is assumed; the routine
  149: *          only calculates the optimal size of the WORK array, returns
  150: *          this value as the first entry of the WORK array, and no error
  151: *          message related to LWORK is issued by XERBLA.
  152: *
  153: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (8*N)
  154: *
  155: *  BWORK   (workspace) LOGICAL array, dimension (N)
  156: *          Not referenced if SORT = 'N'.
  157: *
  158: *  INFO    (output) INTEGER
  159: *          = 0:  successful exit
  160: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  161: *          =1,...,N:
  162: *                The QZ iteration failed.  (A,B) are not in Schur
  163: *                form, but ALPHA(j) and BETA(j) should be correct for
  164: *                j=INFO+1,...,N.
  165: *          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
  166: *                =N+2: after reordering, roundoff changed values of
  167: *                      some complex eigenvalues so that leading
  168: *                      eigenvalues in the Generalized Schur form no
  169: *                      longer satisfy SELCTG=.TRUE.  This could also
  170: *                      be caused due to scaling.
  171: *                =N+3: reordering falied in ZTGSEN.
  172: *
  173: *  =====================================================================
  174: *
  175: *     .. Parameters ..
  176:       DOUBLE PRECISION   ZERO, ONE
  177:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  178:       COMPLEX*16         CZERO, CONE
  179:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
  180:      $                   CONE = ( 1.0D0, 0.0D0 ) )
  181: *     ..
  182: *     .. Local Scalars ..
  183:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
  184:      $                   LQUERY, WANTST
  185:       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
  186:      $                   ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKMIN,
  187:      $                   LWKOPT
  188:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
  189:      $                   PVSR, SMLNUM
  190: *     ..
  191: *     .. Local Arrays ..
  192:       INTEGER            IDUM( 1 )
  193:       DOUBLE PRECISION   DIF( 2 )
  194: *     ..
  195: *     .. External Subroutines ..
  196:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
  197:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
  198:      $                   ZUNMQR
  199: *     ..
  200: *     .. External Functions ..
  201:       LOGICAL            LSAME
  202:       INTEGER            ILAENV
  203:       DOUBLE PRECISION   DLAMCH, ZLANGE
  204:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
  205: *     ..
  206: *     .. Intrinsic Functions ..
  207:       INTRINSIC          MAX, SQRT
  208: *     ..
  209: *     .. Executable Statements ..
  210: *
  211: *     Decode the input arguments
  212: *
  213:       IF( LSAME( JOBVSL, 'N' ) ) THEN
  214:          IJOBVL = 1
  215:          ILVSL = .FALSE.
  216:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
  217:          IJOBVL = 2
  218:          ILVSL = .TRUE.
  219:       ELSE
  220:          IJOBVL = -1
  221:          ILVSL = .FALSE.
  222:       END IF
  223: *
  224:       IF( LSAME( JOBVSR, 'N' ) ) THEN
  225:          IJOBVR = 1
  226:          ILVSR = .FALSE.
  227:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
  228:          IJOBVR = 2
  229:          ILVSR = .TRUE.
  230:       ELSE
  231:          IJOBVR = -1
  232:          ILVSR = .FALSE.
  233:       END IF
  234: *
  235:       WANTST = LSAME( SORT, 'S' )
  236: *
  237: *     Test the input arguments
  238: *
  239:       INFO = 0
  240:       LQUERY = ( LWORK.EQ.-1 )
  241:       IF( IJOBVL.LE.0 ) THEN
  242:          INFO = -1
  243:       ELSE IF( IJOBVR.LE.0 ) THEN
  244:          INFO = -2
  245:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  246:          INFO = -3
  247:       ELSE IF( N.LT.0 ) THEN
  248:          INFO = -5
  249:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  250:          INFO = -7
  251:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  252:          INFO = -9
  253:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
  254:          INFO = -14
  255:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
  256:          INFO = -16
  257:       END IF
  258: *
  259: *     Compute workspace
  260: *      (Note: Comments in the code beginning "Workspace:" describe the
  261: *       minimal amount of workspace needed at that point in the code,
  262: *       as well as the preferred amount for good performance.
  263: *       NB refers to the optimal block size for the immediately
  264: *       following subroutine, as returned by ILAENV.)
  265: *
  266:       IF( INFO.EQ.0 ) THEN
  267:          LWKMIN = MAX( 1, 2*N )
  268:          LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
  269:          LWKOPT = MAX( LWKOPT, N +
  270:      $                 N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, -1 ) )
  271:          IF( ILVSL ) THEN
  272:             LWKOPT = MAX( LWKOPT, N +
  273:      $                    N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
  274:          END IF
  275:          WORK( 1 ) = LWKOPT
  276: *
  277:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
  278:      $      INFO = -18
  279:       END IF
  280: *
  281:       IF( INFO.NE.0 ) THEN
  282:          CALL XERBLA( 'ZGGES ', -INFO )
  283:          RETURN
  284:       ELSE IF( LQUERY ) THEN
  285:          RETURN
  286:       END IF
  287: *
  288: *     Quick return if possible
  289: *
  290:       IF( N.EQ.0 ) THEN
  291:          SDIM = 0
  292:          RETURN
  293:       END IF
  294: *
  295: *     Get machine constants
  296: *
  297:       EPS = DLAMCH( 'P' )
  298:       SMLNUM = DLAMCH( 'S' )
  299:       BIGNUM = ONE / SMLNUM
  300:       CALL DLABAD( SMLNUM, BIGNUM )
  301:       SMLNUM = SQRT( SMLNUM ) / EPS
  302:       BIGNUM = ONE / SMLNUM
  303: *
  304: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  305: *
  306:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  307:       ILASCL = .FALSE.
  308:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  309:          ANRMTO = SMLNUM
  310:          ILASCL = .TRUE.
  311:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  312:          ANRMTO = BIGNUM
  313:          ILASCL = .TRUE.
  314:       END IF
  315: *
  316:       IF( ILASCL )
  317:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  318: *
  319: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  320: *
  321:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  322:       ILBSCL = .FALSE.
  323:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  324:          BNRMTO = SMLNUM
  325:          ILBSCL = .TRUE.
  326:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  327:          BNRMTO = BIGNUM
  328:          ILBSCL = .TRUE.
  329:       END IF
  330: *
  331:       IF( ILBSCL )
  332:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  333: *
  334: *     Permute the matrix to make it more nearly triangular
  335: *     (Real Workspace: need 6*N)
  336: *
  337:       ILEFT = 1
  338:       IRIGHT = N + 1
  339:       IRWRK = IRIGHT + N
  340:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
  341:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
  342: *
  343: *     Reduce B to triangular form (QR decomposition of B)
  344: *     (Complex Workspace: need N, prefer N*NB)
  345: *
  346:       IROWS = IHI + 1 - ILO
  347:       ICOLS = N + 1 - ILO
  348:       ITAU = 1
  349:       IWRK = ITAU + IROWS
  350:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  351:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  352: *
  353: *     Apply the orthogonal transformation to matrix A
  354: *     (Complex Workspace: need N, prefer N*NB)
  355: *
  356:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  357:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  358:      $             LWORK+1-IWRK, IERR )
  359: *
  360: *     Initialize VSL
  361: *     (Complex Workspace: need N, prefer N*NB)
  362: *
  363:       IF( ILVSL ) THEN
  364:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
  365:          IF( IROWS.GT.1 ) THEN
  366:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  367:      $                   VSL( ILO+1, ILO ), LDVSL )
  368:          END IF
  369:          CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
  370:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  371:       END IF
  372: *
  373: *     Initialize VSR
  374: *
  375:       IF( ILVSR )
  376:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
  377: *
  378: *     Reduce to generalized Hessenberg form
  379: *     (Workspace: none needed)
  380: *
  381:       CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
  382:      $             LDVSL, VSR, LDVSR, IERR )
  383: *
  384:       SDIM = 0
  385: *
  386: *     Perform QZ algorithm, computing Schur vectors if desired
  387: *     (Complex Workspace: need N)
  388: *     (Real Workspace: need N)
  389: *
  390:       IWRK = ITAU
  391:       CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
  392:      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
  393:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
  394:       IF( IERR.NE.0 ) THEN
  395:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  396:             INFO = IERR
  397:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  398:             INFO = IERR - N
  399:          ELSE
  400:             INFO = N + 1
  401:          END IF
  402:          GO TO 30
  403:       END IF
  404: *
  405: *     Sort eigenvalues ALPHA/BETA if desired
  406: *     (Workspace: none needed)
  407: *
  408:       IF( WANTST ) THEN
  409: *
  410: *        Undo scaling on eigenvalues before selecting
  411: *
  412:          IF( ILASCL )
  413:      $      CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, 1, ALPHA, N, IERR )
  414:          IF( ILBSCL )
  415:      $      CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, 1, BETA, N, IERR )
  416: *
  417: *        Select eigenvalues
  418: *
  419:          DO 10 I = 1, N
  420:             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
  421:    10    CONTINUE
  422: *
  423:          CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHA,
  424:      $                BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, PVSR,
  425:      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, IERR )
  426:          IF( IERR.EQ.1 )
  427:      $      INFO = N + 3
  428: *
  429:       END IF
  430: *
  431: *     Apply back-permutation to VSL and VSR
  432: *     (Workspace: none needed)
  433: *
  434:       IF( ILVSL )
  435:      $   CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
  436:      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
  437:       IF( ILVSR )
  438:      $   CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
  439:      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
  440: *
  441: *     Undo scaling
  442: *
  443:       IF( ILASCL ) THEN
  444:          CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
  445:          CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
  446:       END IF
  447: *
  448:       IF( ILBSCL ) THEN
  449:          CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
  450:          CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  451:       END IF
  452: *
  453:       IF( WANTST ) THEN
  454: *
  455: *        Check if reordering is correct
  456: *
  457:          LASTSL = .TRUE.
  458:          SDIM = 0
  459:          DO 20 I = 1, N
  460:             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
  461:             IF( CURSL )
  462:      $         SDIM = SDIM + 1
  463:             IF( CURSL .AND. .NOT.LASTSL )
  464:      $         INFO = N + 2
  465:             LASTSL = CURSL
  466:    20    CONTINUE
  467: *
  468:       END IF
  469: *
  470:    30 CONTINUE
  471: *
  472:       WORK( 1 ) = LWKOPT
  473: *
  474:       RETURN
  475: *
  476: *     End of ZGGES
  477: *
  478:       END

CVSweb interface <joel.bertrand@systella.fr>