Annotation of rpl/lapack/lapack/zgges.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
        !             2:      $                  SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
        !             3:      $                  LWORK, RWORK, BWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          JOBVSL, JOBVSR, SORT
        !            12:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       LOGICAL            BWORK( * )
        !            16:       DOUBLE PRECISION   RWORK( * )
        !            17:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
        !            18:      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
        !            19:      $                   WORK( * )
        !            20: *     ..
        !            21: *     .. Function Arguments ..
        !            22:       LOGICAL            SELCTG
        !            23:       EXTERNAL           SELCTG
        !            24: *     ..
        !            25: *
        !            26: *  Purpose
        !            27: *  =======
        !            28: *
        !            29: *  ZGGES computes for a pair of N-by-N complex nonsymmetric matrices
        !            30: *  (A,B), the generalized eigenvalues, the generalized complex Schur
        !            31: *  form (S, T), and optionally left and/or right Schur vectors (VSL
        !            32: *  and VSR). This gives the generalized Schur factorization
        !            33: *
        !            34: *          (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
        !            35: *
        !            36: *  where (VSR)**H is the conjugate-transpose of VSR.
        !            37: *
        !            38: *  Optionally, it also orders the eigenvalues so that a selected cluster
        !            39: *  of eigenvalues appears in the leading diagonal blocks of the upper
        !            40: *  triangular matrix S and the upper triangular matrix T. The leading
        !            41: *  columns of VSL and VSR then form an unitary basis for the
        !            42: *  corresponding left and right eigenspaces (deflating subspaces).
        !            43: *
        !            44: *  (If only the generalized eigenvalues are needed, use the driver
        !            45: *  ZGGEV instead, which is faster.)
        !            46: *
        !            47: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
        !            48: *  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
        !            49: *  usually represented as the pair (alpha,beta), as there is a
        !            50: *  reasonable interpretation for beta=0, and even for both being zero.
        !            51: *
        !            52: *  A pair of matrices (S,T) is in generalized complex Schur form if S
        !            53: *  and T are upper triangular and, in addition, the diagonal elements
        !            54: *  of T are non-negative real numbers.
        !            55: *
        !            56: *  Arguments
        !            57: *  =========
        !            58: *
        !            59: *  JOBVSL  (input) CHARACTER*1
        !            60: *          = 'N':  do not compute the left Schur vectors;
        !            61: *          = 'V':  compute the left Schur vectors.
        !            62: *
        !            63: *  JOBVSR  (input) CHARACTER*1
        !            64: *          = 'N':  do not compute the right Schur vectors;
        !            65: *          = 'V':  compute the right Schur vectors.
        !            66: *
        !            67: *  SORT    (input) CHARACTER*1
        !            68: *          Specifies whether or not to order the eigenvalues on the
        !            69: *          diagonal of the generalized Schur form.
        !            70: *          = 'N':  Eigenvalues are not ordered;
        !            71: *          = 'S':  Eigenvalues are ordered (see SELCTG).
        !            72: *
        !            73: *  SELCTG  (external procedure) LOGICAL FUNCTION of two COMPLEX*16 arguments
        !            74: *          SELCTG must be declared EXTERNAL in the calling subroutine.
        !            75: *          If SORT = 'N', SELCTG is not referenced.
        !            76: *          If SORT = 'S', SELCTG is used to select eigenvalues to sort
        !            77: *          to the top left of the Schur form.
        !            78: *          An eigenvalue ALPHA(j)/BETA(j) is selected if
        !            79: *          SELCTG(ALPHA(j),BETA(j)) is true.
        !            80: *
        !            81: *          Note that a selected complex eigenvalue may no longer satisfy
        !            82: *          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
        !            83: *          ordering may change the value of complex eigenvalues
        !            84: *          (especially if the eigenvalue is ill-conditioned), in this
        !            85: *          case INFO is set to N+2 (See INFO below).
        !            86: *
        !            87: *  N       (input) INTEGER
        !            88: *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
        !            89: *
        !            90: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
        !            91: *          On entry, the first of the pair of matrices.
        !            92: *          On exit, A has been overwritten by its generalized Schur
        !            93: *          form S.
        !            94: *
        !            95: *  LDA     (input) INTEGER
        !            96: *          The leading dimension of A.  LDA >= max(1,N).
        !            97: *
        !            98: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
        !            99: *          On entry, the second of the pair of matrices.
        !           100: *          On exit, B has been overwritten by its generalized Schur
        !           101: *          form T.
        !           102: *
        !           103: *  LDB     (input) INTEGER
        !           104: *          The leading dimension of B.  LDB >= max(1,N).
        !           105: *
        !           106: *  SDIM    (output) INTEGER
        !           107: *          If SORT = 'N', SDIM = 0.
        !           108: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
        !           109: *          for which SELCTG is true.
        !           110: *
        !           111: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
        !           112: *  BETA    (output) COMPLEX*16 array, dimension (N)
        !           113: *          On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
        !           114: *          generalized eigenvalues.  ALPHA(j), j=1,...,N  and  BETA(j),
        !           115: *          j=1,...,N  are the diagonals of the complex Schur form (A,B)
        !           116: *          output by ZGGES. The  BETA(j) will be non-negative real.
        !           117: *
        !           118: *          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
        !           119: *          underflow, and BETA(j) may even be zero.  Thus, the user
        !           120: *          should avoid naively computing the ratio alpha/beta.
        !           121: *          However, ALPHA will be always less than and usually
        !           122: *          comparable with norm(A) in magnitude, and BETA always less
        !           123: *          than and usually comparable with norm(B).
        !           124: *
        !           125: *  VSL     (output) COMPLEX*16 array, dimension (LDVSL,N)
        !           126: *          If JOBVSL = 'V', VSL will contain the left Schur vectors.
        !           127: *          Not referenced if JOBVSL = 'N'.
        !           128: *
        !           129: *  LDVSL   (input) INTEGER
        !           130: *          The leading dimension of the matrix VSL. LDVSL >= 1, and
        !           131: *          if JOBVSL = 'V', LDVSL >= N.
        !           132: *
        !           133: *  VSR     (output) COMPLEX*16 array, dimension (LDVSR,N)
        !           134: *          If JOBVSR = 'V', VSR will contain the right Schur vectors.
        !           135: *          Not referenced if JOBVSR = 'N'.
        !           136: *
        !           137: *  LDVSR   (input) INTEGER
        !           138: *          The leading dimension of the matrix VSR. LDVSR >= 1, and
        !           139: *          if JOBVSR = 'V', LDVSR >= N.
        !           140: *
        !           141: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           142: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           143: *
        !           144: *  LWORK   (input) INTEGER
        !           145: *          The dimension of the array WORK.  LWORK >= max(1,2*N).
        !           146: *          For good performance, LWORK must generally be larger.
        !           147: *
        !           148: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           149: *          only calculates the optimal size of the WORK array, returns
        !           150: *          this value as the first entry of the WORK array, and no error
        !           151: *          message related to LWORK is issued by XERBLA.
        !           152: *
        !           153: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (8*N)
        !           154: *
        !           155: *  BWORK   (workspace) LOGICAL array, dimension (N)
        !           156: *          Not referenced if SORT = 'N'.
        !           157: *
        !           158: *  INFO    (output) INTEGER
        !           159: *          = 0:  successful exit
        !           160: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           161: *          =1,...,N:
        !           162: *                The QZ iteration failed.  (A,B) are not in Schur
        !           163: *                form, but ALPHA(j) and BETA(j) should be correct for
        !           164: *                j=INFO+1,...,N.
        !           165: *          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
        !           166: *                =N+2: after reordering, roundoff changed values of
        !           167: *                      some complex eigenvalues so that leading
        !           168: *                      eigenvalues in the Generalized Schur form no
        !           169: *                      longer satisfy SELCTG=.TRUE.  This could also
        !           170: *                      be caused due to scaling.
        !           171: *                =N+3: reordering falied in ZTGSEN.
        !           172: *
        !           173: *  =====================================================================
        !           174: *
        !           175: *     .. Parameters ..
        !           176:       DOUBLE PRECISION   ZERO, ONE
        !           177:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           178:       COMPLEX*16         CZERO, CONE
        !           179:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
        !           180:      $                   CONE = ( 1.0D0, 0.0D0 ) )
        !           181: *     ..
        !           182: *     .. Local Scalars ..
        !           183:       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
        !           184:      $                   LQUERY, WANTST
        !           185:       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
        !           186:      $                   ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKMIN,
        !           187:      $                   LWKOPT
        !           188:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
        !           189:      $                   PVSR, SMLNUM
        !           190: *     ..
        !           191: *     .. Local Arrays ..
        !           192:       INTEGER            IDUM( 1 )
        !           193:       DOUBLE PRECISION   DIF( 2 )
        !           194: *     ..
        !           195: *     .. External Subroutines ..
        !           196:       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
        !           197:      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
        !           198:      $                   ZUNMQR
        !           199: *     ..
        !           200: *     .. External Functions ..
        !           201:       LOGICAL            LSAME
        !           202:       INTEGER            ILAENV
        !           203:       DOUBLE PRECISION   DLAMCH, ZLANGE
        !           204:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
        !           205: *     ..
        !           206: *     .. Intrinsic Functions ..
        !           207:       INTRINSIC          MAX, SQRT
        !           208: *     ..
        !           209: *     .. Executable Statements ..
        !           210: *
        !           211: *     Decode the input arguments
        !           212: *
        !           213:       IF( LSAME( JOBVSL, 'N' ) ) THEN
        !           214:          IJOBVL = 1
        !           215:          ILVSL = .FALSE.
        !           216:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
        !           217:          IJOBVL = 2
        !           218:          ILVSL = .TRUE.
        !           219:       ELSE
        !           220:          IJOBVL = -1
        !           221:          ILVSL = .FALSE.
        !           222:       END IF
        !           223: *
        !           224:       IF( LSAME( JOBVSR, 'N' ) ) THEN
        !           225:          IJOBVR = 1
        !           226:          ILVSR = .FALSE.
        !           227:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
        !           228:          IJOBVR = 2
        !           229:          ILVSR = .TRUE.
        !           230:       ELSE
        !           231:          IJOBVR = -1
        !           232:          ILVSR = .FALSE.
        !           233:       END IF
        !           234: *
        !           235:       WANTST = LSAME( SORT, 'S' )
        !           236: *
        !           237: *     Test the input arguments
        !           238: *
        !           239:       INFO = 0
        !           240:       LQUERY = ( LWORK.EQ.-1 )
        !           241:       IF( IJOBVL.LE.0 ) THEN
        !           242:          INFO = -1
        !           243:       ELSE IF( IJOBVR.LE.0 ) THEN
        !           244:          INFO = -2
        !           245:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
        !           246:          INFO = -3
        !           247:       ELSE IF( N.LT.0 ) THEN
        !           248:          INFO = -5
        !           249:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           250:          INFO = -7
        !           251:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           252:          INFO = -9
        !           253:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
        !           254:          INFO = -14
        !           255:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
        !           256:          INFO = -16
        !           257:       END IF
        !           258: *
        !           259: *     Compute workspace
        !           260: *      (Note: Comments in the code beginning "Workspace:" describe the
        !           261: *       minimal amount of workspace needed at that point in the code,
        !           262: *       as well as the preferred amount for good performance.
        !           263: *       NB refers to the optimal block size for the immediately
        !           264: *       following subroutine, as returned by ILAENV.)
        !           265: *
        !           266:       IF( INFO.EQ.0 ) THEN
        !           267:          LWKMIN = MAX( 1, 2*N )
        !           268:          LWKOPT = MAX( 1, N + N*ILAENV( 1, 'ZGEQRF', ' ', N, 1, N, 0 ) )
        !           269:          LWKOPT = MAX( LWKOPT, N +
        !           270:      $                 N*ILAENV( 1, 'ZUNMQR', ' ', N, 1, N, -1 ) )
        !           271:          IF( ILVSL ) THEN
        !           272:             LWKOPT = MAX( LWKOPT, N +
        !           273:      $                    N*ILAENV( 1, 'ZUNGQR', ' ', N, 1, N, -1 ) )
        !           274:          END IF
        !           275:          WORK( 1 ) = LWKOPT
        !           276: *
        !           277:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
        !           278:      $      INFO = -18
        !           279:       END IF
        !           280: *
        !           281:       IF( INFO.NE.0 ) THEN
        !           282:          CALL XERBLA( 'ZGGES ', -INFO )
        !           283:          RETURN
        !           284:       ELSE IF( LQUERY ) THEN
        !           285:          RETURN
        !           286:       END IF
        !           287: *
        !           288: *     Quick return if possible
        !           289: *
        !           290:       IF( N.EQ.0 ) THEN
        !           291:          SDIM = 0
        !           292:          RETURN
        !           293:       END IF
        !           294: *
        !           295: *     Get machine constants
        !           296: *
        !           297:       EPS = DLAMCH( 'P' )
        !           298:       SMLNUM = DLAMCH( 'S' )
        !           299:       BIGNUM = ONE / SMLNUM
        !           300:       CALL DLABAD( SMLNUM, BIGNUM )
        !           301:       SMLNUM = SQRT( SMLNUM ) / EPS
        !           302:       BIGNUM = ONE / SMLNUM
        !           303: *
        !           304: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           305: *
        !           306:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
        !           307:       ILASCL = .FALSE.
        !           308:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           309:          ANRMTO = SMLNUM
        !           310:          ILASCL = .TRUE.
        !           311:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           312:          ANRMTO = BIGNUM
        !           313:          ILASCL = .TRUE.
        !           314:       END IF
        !           315: *
        !           316:       IF( ILASCL )
        !           317:      $   CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
        !           318: *
        !           319: *     Scale B if max element outside range [SMLNUM,BIGNUM]
        !           320: *
        !           321:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
        !           322:       ILBSCL = .FALSE.
        !           323:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           324:          BNRMTO = SMLNUM
        !           325:          ILBSCL = .TRUE.
        !           326:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           327:          BNRMTO = BIGNUM
        !           328:          ILBSCL = .TRUE.
        !           329:       END IF
        !           330: *
        !           331:       IF( ILBSCL )
        !           332:      $   CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
        !           333: *
        !           334: *     Permute the matrix to make it more nearly triangular
        !           335: *     (Real Workspace: need 6*N)
        !           336: *
        !           337:       ILEFT = 1
        !           338:       IRIGHT = N + 1
        !           339:       IRWRK = IRIGHT + N
        !           340:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
        !           341:      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
        !           342: *
        !           343: *     Reduce B to triangular form (QR decomposition of B)
        !           344: *     (Complex Workspace: need N, prefer N*NB)
        !           345: *
        !           346:       IROWS = IHI + 1 - ILO
        !           347:       ICOLS = N + 1 - ILO
        !           348:       ITAU = 1
        !           349:       IWRK = ITAU + IROWS
        !           350:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
        !           351:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           352: *
        !           353: *     Apply the orthogonal transformation to matrix A
        !           354: *     (Complex Workspace: need N, prefer N*NB)
        !           355: *
        !           356:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
        !           357:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
        !           358:      $             LWORK+1-IWRK, IERR )
        !           359: *
        !           360: *     Initialize VSL
        !           361: *     (Complex Workspace: need N, prefer N*NB)
        !           362: *
        !           363:       IF( ILVSL ) THEN
        !           364:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
        !           365:          IF( IROWS.GT.1 ) THEN
        !           366:             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
        !           367:      $                   VSL( ILO+1, ILO ), LDVSL )
        !           368:          END IF
        !           369:          CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
        !           370:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
        !           371:       END IF
        !           372: *
        !           373: *     Initialize VSR
        !           374: *
        !           375:       IF( ILVSR )
        !           376:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
        !           377: *
        !           378: *     Reduce to generalized Hessenberg form
        !           379: *     (Workspace: none needed)
        !           380: *
        !           381:       CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
        !           382:      $             LDVSL, VSR, LDVSR, IERR )
        !           383: *
        !           384:       SDIM = 0
        !           385: *
        !           386: *     Perform QZ algorithm, computing Schur vectors if desired
        !           387: *     (Complex Workspace: need N)
        !           388: *     (Real Workspace: need N)
        !           389: *
        !           390:       IWRK = ITAU
        !           391:       CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
        !           392:      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
        !           393:      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
        !           394:       IF( IERR.NE.0 ) THEN
        !           395:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
        !           396:             INFO = IERR
        !           397:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
        !           398:             INFO = IERR - N
        !           399:          ELSE
        !           400:             INFO = N + 1
        !           401:          END IF
        !           402:          GO TO 30
        !           403:       END IF
        !           404: *
        !           405: *     Sort eigenvalues ALPHA/BETA if desired
        !           406: *     (Workspace: none needed)
        !           407: *
        !           408:       IF( WANTST ) THEN
        !           409: *
        !           410: *        Undo scaling on eigenvalues before selecting
        !           411: *
        !           412:          IF( ILASCL )
        !           413:      $      CALL ZLASCL( 'G', 0, 0, ANRM, ANRMTO, N, 1, ALPHA, N, IERR )
        !           414:          IF( ILBSCL )
        !           415:      $      CALL ZLASCL( 'G', 0, 0, BNRM, BNRMTO, N, 1, BETA, N, IERR )
        !           416: *
        !           417: *        Select eigenvalues
        !           418: *
        !           419:          DO 10 I = 1, N
        !           420:             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
        !           421:    10    CONTINUE
        !           422: *
        !           423:          CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHA,
        !           424:      $                BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, PVSR,
        !           425:      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, IERR )
        !           426:          IF( IERR.EQ.1 )
        !           427:      $      INFO = N + 3
        !           428: *
        !           429:       END IF
        !           430: *
        !           431: *     Apply back-permutation to VSL and VSR
        !           432: *     (Workspace: none needed)
        !           433: *
        !           434:       IF( ILVSL )
        !           435:      $   CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
        !           436:      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
        !           437:       IF( ILVSR )
        !           438:      $   CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
        !           439:      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
        !           440: *
        !           441: *     Undo scaling
        !           442: *
        !           443:       IF( ILASCL ) THEN
        !           444:          CALL ZLASCL( 'U', 0, 0, ANRMTO, ANRM, N, N, A, LDA, IERR )
        !           445:          CALL ZLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
        !           446:       END IF
        !           447: *
        !           448:       IF( ILBSCL ) THEN
        !           449:          CALL ZLASCL( 'U', 0, 0, BNRMTO, BNRM, N, N, B, LDB, IERR )
        !           450:          CALL ZLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
        !           451:       END IF
        !           452: *
        !           453:       IF( WANTST ) THEN
        !           454: *
        !           455: *        Check if reordering is correct
        !           456: *
        !           457:          LASTSL = .TRUE.
        !           458:          SDIM = 0
        !           459:          DO 20 I = 1, N
        !           460:             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
        !           461:             IF( CURSL )
        !           462:      $         SDIM = SDIM + 1
        !           463:             IF( CURSL .AND. .NOT.LASTSL )
        !           464:      $         INFO = N + 2
        !           465:             LASTSL = CURSL
        !           466:    20    CONTINUE
        !           467: *
        !           468:       END IF
        !           469: *
        !           470:    30 CONTINUE
        !           471: *
        !           472:       WORK( 1 ) = LWKOPT
        !           473: *
        !           474:       RETURN
        !           475: *
        !           476: *     End of ZGGES
        !           477: *
        !           478:       END

CVSweb interface <joel.bertrand@systella.fr>