File:  [local] / rpl / lapack / lapack / zgerq2.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:19 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGERQ2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgerq2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgerq2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgerq2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGERQ2( M, N, A, LDA, TAU, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
   28: *       ..
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> ZGERQ2 computes an RQ factorization of a complex m by n matrix A:
   37: *> A = R * Q.
   38: *> \endverbatim
   39: *
   40: *  Arguments:
   41: *  ==========
   42: *
   43: *> \param[in] M
   44: *> \verbatim
   45: *>          M is INTEGER
   46: *>          The number of rows of the matrix A.  M >= 0.
   47: *> \endverbatim
   48: *>
   49: *> \param[in] N
   50: *> \verbatim
   51: *>          N is INTEGER
   52: *>          The number of columns of the matrix A.  N >= 0.
   53: *> \endverbatim
   54: *>
   55: *> \param[in,out] A
   56: *> \verbatim
   57: *>          A is COMPLEX*16 array, dimension (LDA,N)
   58: *>          On entry, the m by n matrix A.
   59: *>          On exit, if m <= n, the upper triangle of the subarray
   60: *>          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
   61: *>          if m >= n, the elements on and above the (m-n)-th subdiagonal
   62: *>          contain the m by n upper trapezoidal matrix R; the remaining
   63: *>          elements, with the array TAU, represent the unitary matrix
   64: *>          Q as a product of elementary reflectors (see Further
   65: *>          Details).
   66: *> \endverbatim
   67: *>
   68: *> \param[in] LDA
   69: *> \verbatim
   70: *>          LDA is INTEGER
   71: *>          The leading dimension of the array A.  LDA >= max(1,M).
   72: *> \endverbatim
   73: *>
   74: *> \param[out] TAU
   75: *> \verbatim
   76: *>          TAU is COMPLEX*16 array, dimension (min(M,N))
   77: *>          The scalar factors of the elementary reflectors (see Further
   78: *>          Details).
   79: *> \endverbatim
   80: *>
   81: *> \param[out] WORK
   82: *> \verbatim
   83: *>          WORK is COMPLEX*16 array, dimension (M)
   84: *> \endverbatim
   85: *>
   86: *> \param[out] INFO
   87: *> \verbatim
   88: *>          INFO is INTEGER
   89: *>          = 0: successful exit
   90: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   91: *> \endverbatim
   92: *
   93: *  Authors:
   94: *  ========
   95: *
   96: *> \author Univ. of Tennessee
   97: *> \author Univ. of California Berkeley
   98: *> \author Univ. of Colorado Denver
   99: *> \author NAG Ltd.
  100: *
  101: *> \ingroup complex16GEcomputational
  102: *
  103: *> \par Further Details:
  104: *  =====================
  105: *>
  106: *> \verbatim
  107: *>
  108: *>  The matrix Q is represented as a product of elementary reflectors
  109: *>
  110: *>     Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).
  111: *>
  112: *>  Each H(i) has the form
  113: *>
  114: *>     H(i) = I - tau * v * v**H
  115: *>
  116: *>  where tau is a complex scalar, and v is a complex vector with
  117: *>  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
  118: *>  exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
  119: *> \endverbatim
  120: *>
  121: *  =====================================================================
  122:       SUBROUTINE ZGERQ2( M, N, A, LDA, TAU, WORK, INFO )
  123: *
  124: *  -- LAPACK computational routine --
  125: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  126: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  127: *
  128: *     .. Scalar Arguments ..
  129:       INTEGER            INFO, LDA, M, N
  130: *     ..
  131: *     .. Array Arguments ..
  132:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
  133: *     ..
  134: *
  135: *  =====================================================================
  136: *
  137: *     .. Parameters ..
  138:       COMPLEX*16         ONE
  139:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  140: *     ..
  141: *     .. Local Scalars ..
  142:       INTEGER            I, K
  143:       COMPLEX*16         ALPHA
  144: *     ..
  145: *     .. External Subroutines ..
  146:       EXTERNAL           XERBLA, ZLACGV, ZLARF, ZLARFG
  147: *     ..
  148: *     .. Intrinsic Functions ..
  149:       INTRINSIC          MAX, MIN
  150: *     ..
  151: *     .. Executable Statements ..
  152: *
  153: *     Test the input arguments
  154: *
  155:       INFO = 0
  156:       IF( M.LT.0 ) THEN
  157:          INFO = -1
  158:       ELSE IF( N.LT.0 ) THEN
  159:          INFO = -2
  160:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  161:          INFO = -4
  162:       END IF
  163:       IF( INFO.NE.0 ) THEN
  164:          CALL XERBLA( 'ZGERQ2', -INFO )
  165:          RETURN
  166:       END IF
  167: *
  168:       K = MIN( M, N )
  169: *
  170:       DO 10 I = K, 1, -1
  171: *
  172: *        Generate elementary reflector H(i) to annihilate
  173: *        A(m-k+i,1:n-k+i-1)
  174: *
  175:          CALL ZLACGV( N-K+I, A( M-K+I, 1 ), LDA )
  176:          ALPHA = A( M-K+I, N-K+I )
  177:          CALL ZLARFG( N-K+I, ALPHA, A( M-K+I, 1 ), LDA, TAU( I ) )
  178: *
  179: *        Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
  180: *
  181:          A( M-K+I, N-K+I ) = ONE
  182:          CALL ZLARF( 'Right', M-K+I-1, N-K+I, A( M-K+I, 1 ), LDA,
  183:      $               TAU( I ), A, LDA, WORK )
  184:          A( M-K+I, N-K+I ) = ALPHA
  185:          CALL ZLACGV( N-K+I-1, A( M-K+I, 1 ), LDA )
  186:    10 CONTINUE
  187:       RETURN
  188: *
  189: *     End of ZGERQ2
  190: *
  191:       END

CVSweb interface <joel.bertrand@systella.fr>