Annotation of rpl/lapack/lapack/zgerq2.f, revision 1.20

1.13      bertrand    1: *> \brief \b ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download ZGERQ2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgerq2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgerq2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgerq2.f">
1.10      bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGERQ2( M, N, A, LDA, TAU, WORK, INFO )
1.17      bertrand   22: *
1.10      bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
1.17      bertrand   29: *
1.10      bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> ZGERQ2 computes an RQ factorization of a complex m by n matrix A:
                     37: *> A = R * Q.
                     38: *> \endverbatim
                     39: *
                     40: *  Arguments:
                     41: *  ==========
                     42: *
                     43: *> \param[in] M
                     44: *> \verbatim
                     45: *>          M is INTEGER
                     46: *>          The number of rows of the matrix A.  M >= 0.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] N
                     50: *> \verbatim
                     51: *>          N is INTEGER
                     52: *>          The number of columns of the matrix A.  N >= 0.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in,out] A
                     56: *> \verbatim
                     57: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     58: *>          On entry, the m by n matrix A.
                     59: *>          On exit, if m <= n, the upper triangle of the subarray
                     60: *>          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
                     61: *>          if m >= n, the elements on and above the (m-n)-th subdiagonal
                     62: *>          contain the m by n upper trapezoidal matrix R; the remaining
                     63: *>          elements, with the array TAU, represent the unitary matrix
                     64: *>          Q as a product of elementary reflectors (see Further
                     65: *>          Details).
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] LDA
                     69: *> \verbatim
                     70: *>          LDA is INTEGER
                     71: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[out] TAU
                     75: *> \verbatim
                     76: *>          TAU is COMPLEX*16 array, dimension (min(M,N))
                     77: *>          The scalar factors of the elementary reflectors (see Further
                     78: *>          Details).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[out] WORK
                     82: *> \verbatim
                     83: *>          WORK is COMPLEX*16 array, dimension (M)
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[out] INFO
                     87: *> \verbatim
                     88: *>          INFO is INTEGER
                     89: *>          = 0: successful exit
                     90: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                     91: *> \endverbatim
                     92: *
                     93: *  Authors:
                     94: *  ========
                     95: *
1.17      bertrand   96: *> \author Univ. of Tennessee
                     97: *> \author Univ. of California Berkeley
                     98: *> \author Univ. of Colorado Denver
                     99: *> \author NAG Ltd.
1.10      bertrand  100: *
                    101: *> \ingroup complex16GEcomputational
                    102: *
                    103: *> \par Further Details:
                    104: *  =====================
                    105: *>
                    106: *> \verbatim
                    107: *>
                    108: *>  The matrix Q is represented as a product of elementary reflectors
                    109: *>
                    110: *>     Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).
                    111: *>
                    112: *>  Each H(i) has the form
                    113: *>
                    114: *>     H(i) = I - tau * v * v**H
                    115: *>
                    116: *>  where tau is a complex scalar, and v is a complex vector with
                    117: *>  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
                    118: *>  exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
                    119: *> \endverbatim
                    120: *>
                    121: *  =====================================================================
1.1       bertrand  122:       SUBROUTINE ZGERQ2( M, N, A, LDA, TAU, WORK, INFO )
                    123: *
1.20    ! bertrand  124: *  -- LAPACK computational routine --
1.1       bertrand  125: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    126: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    127: *
                    128: *     .. Scalar Arguments ..
                    129:       INTEGER            INFO, LDA, M, N
                    130: *     ..
                    131: *     .. Array Arguments ..
                    132:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                    133: *     ..
                    134: *
                    135: *  =====================================================================
                    136: *
                    137: *     .. Parameters ..
                    138:       COMPLEX*16         ONE
                    139:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    140: *     ..
                    141: *     .. Local Scalars ..
                    142:       INTEGER            I, K
                    143:       COMPLEX*16         ALPHA
                    144: *     ..
                    145: *     .. External Subroutines ..
1.5       bertrand  146:       EXTERNAL           XERBLA, ZLACGV, ZLARF, ZLARFG
1.1       bertrand  147: *     ..
                    148: *     .. Intrinsic Functions ..
                    149:       INTRINSIC          MAX, MIN
                    150: *     ..
                    151: *     .. Executable Statements ..
                    152: *
                    153: *     Test the input arguments
                    154: *
                    155:       INFO = 0
                    156:       IF( M.LT.0 ) THEN
                    157:          INFO = -1
                    158:       ELSE IF( N.LT.0 ) THEN
                    159:          INFO = -2
                    160:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    161:          INFO = -4
                    162:       END IF
                    163:       IF( INFO.NE.0 ) THEN
                    164:          CALL XERBLA( 'ZGERQ2', -INFO )
                    165:          RETURN
                    166:       END IF
                    167: *
                    168:       K = MIN( M, N )
                    169: *
                    170:       DO 10 I = K, 1, -1
                    171: *
                    172: *        Generate elementary reflector H(i) to annihilate
                    173: *        A(m-k+i,1:n-k+i-1)
                    174: *
                    175:          CALL ZLACGV( N-K+I, A( M-K+I, 1 ), LDA )
                    176:          ALPHA = A( M-K+I, N-K+I )
1.5       bertrand  177:          CALL ZLARFG( N-K+I, ALPHA, A( M-K+I, 1 ), LDA, TAU( I ) )
1.1       bertrand  178: *
                    179: *        Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
                    180: *
                    181:          A( M-K+I, N-K+I ) = ONE
                    182:          CALL ZLARF( 'Right', M-K+I-1, N-K+I, A( M-K+I, 1 ), LDA,
                    183:      $               TAU( I ), A, LDA, WORK )
                    184:          A( M-K+I, N-K+I ) = ALPHA
                    185:          CALL ZLACGV( N-K+I-1, A( M-K+I, 1 ), LDA )
                    186:    10 CONTINUE
                    187:       RETURN
                    188: *
                    189: *     End of ZGERQ2
                    190: *
                    191:       END

CVSweb interface <joel.bertrand@systella.fr>