File:  [local] / rpl / lapack / lapack / zgelss.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:17 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZGELSS solves overdetermined or underdetermined systems for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGELSS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelss.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelss.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelss.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
   22: *                          WORK, LWORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
   26: *       DOUBLE PRECISION   RCOND
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   RWORK( * ), S( * )
   30: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZGELSS computes the minimum norm solution to a complex linear
   40: *> least squares problem:
   41: *>
   42: *> Minimize 2-norm(| b - A*x |).
   43: *>
   44: *> using the singular value decomposition (SVD) of A. A is an M-by-N
   45: *> matrix which may be rank-deficient.
   46: *>
   47: *> Several right hand side vectors b and solution vectors x can be
   48: *> handled in a single call; they are stored as the columns of the
   49: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
   50: *> X.
   51: *>
   52: *> The effective rank of A is determined by treating as zero those
   53: *> singular values which are less than RCOND times the largest singular
   54: *> value.
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] M
   61: *> \verbatim
   62: *>          M is INTEGER
   63: *>          The number of rows of the matrix A. M >= 0.
   64: *> \endverbatim
   65: *>
   66: *> \param[in] N
   67: *> \verbatim
   68: *>          N is INTEGER
   69: *>          The number of columns of the matrix A. N >= 0.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] NRHS
   73: *> \verbatim
   74: *>          NRHS is INTEGER
   75: *>          The number of right hand sides, i.e., the number of columns
   76: *>          of the matrices B and X. NRHS >= 0.
   77: *> \endverbatim
   78: *>
   79: *> \param[in,out] A
   80: *> \verbatim
   81: *>          A is COMPLEX*16 array, dimension (LDA,N)
   82: *>          On entry, the M-by-N matrix A.
   83: *>          On exit, the first min(m,n) rows of A are overwritten with
   84: *>          its right singular vectors, stored rowwise.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] LDA
   88: *> \verbatim
   89: *>          LDA is INTEGER
   90: *>          The leading dimension of the array A. LDA >= max(1,M).
   91: *> \endverbatim
   92: *>
   93: *> \param[in,out] B
   94: *> \verbatim
   95: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   96: *>          On entry, the M-by-NRHS right hand side matrix B.
   97: *>          On exit, B is overwritten by the N-by-NRHS solution matrix X.
   98: *>          If m >= n and RANK = n, the residual sum-of-squares for
   99: *>          the solution in the i-th column is given by the sum of
  100: *>          squares of the modulus of elements n+1:m in that column.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDB
  104: *> \verbatim
  105: *>          LDB is INTEGER
  106: *>          The leading dimension of the array B.  LDB >= max(1,M,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[out] S
  110: *> \verbatim
  111: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
  112: *>          The singular values of A in decreasing order.
  113: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
  114: *> \endverbatim
  115: *>
  116: *> \param[in] RCOND
  117: *> \verbatim
  118: *>          RCOND is DOUBLE PRECISION
  119: *>          RCOND is used to determine the effective rank of A.
  120: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
  121: *>          If RCOND < 0, machine precision is used instead.
  122: *> \endverbatim
  123: *>
  124: *> \param[out] RANK
  125: *> \verbatim
  126: *>          RANK is INTEGER
  127: *>          The effective rank of A, i.e., the number of singular values
  128: *>          which are greater than RCOND*S(1).
  129: *> \endverbatim
  130: *>
  131: *> \param[out] WORK
  132: *> \verbatim
  133: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  134: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  135: *> \endverbatim
  136: *>
  137: *> \param[in] LWORK
  138: *> \verbatim
  139: *>          LWORK is INTEGER
  140: *>          The dimension of the array WORK. LWORK >= 1, and also:
  141: *>          LWORK >=  2*min(M,N) + max(M,N,NRHS)
  142: *>          For good performance, LWORK should generally be larger.
  143: *>
  144: *>          If LWORK = -1, then a workspace query is assumed; the routine
  145: *>          only calculates the optimal size of the WORK array, returns
  146: *>          this value as the first entry of the WORK array, and no error
  147: *>          message related to LWORK is issued by XERBLA.
  148: *> \endverbatim
  149: *>
  150: *> \param[out] RWORK
  151: *> \verbatim
  152: *>          RWORK is DOUBLE PRECISION array, dimension (5*min(M,N))
  153: *> \endverbatim
  154: *>
  155: *> \param[out] INFO
  156: *> \verbatim
  157: *>          INFO is INTEGER
  158: *>          = 0:  successful exit
  159: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  160: *>          > 0:  the algorithm for computing the SVD failed to converge;
  161: *>                if INFO = i, i off-diagonal elements of an intermediate
  162: *>                bidiagonal form did not converge to zero.
  163: *> \endverbatim
  164: *
  165: *  Authors:
  166: *  ========
  167: *
  168: *> \author Univ. of Tennessee
  169: *> \author Univ. of California Berkeley
  170: *> \author Univ. of Colorado Denver
  171: *> \author NAG Ltd.
  172: *
  173: *> \ingroup complex16GEsolve
  174: *
  175: *  =====================================================================
  176:       SUBROUTINE ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
  177:      $                   WORK, LWORK, RWORK, INFO )
  178: *
  179: *  -- LAPACK driver routine --
  180: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  181: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  182: *
  183: *     .. Scalar Arguments ..
  184:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
  185:       DOUBLE PRECISION   RCOND
  186: *     ..
  187: *     .. Array Arguments ..
  188:       DOUBLE PRECISION   RWORK( * ), S( * )
  189:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
  190: *     ..
  191: *
  192: *  =====================================================================
  193: *
  194: *     .. Parameters ..
  195:       DOUBLE PRECISION   ZERO, ONE
  196:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  197:       COMPLEX*16         CZERO, CONE
  198:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  199:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  200: *     ..
  201: *     .. Local Scalars ..
  202:       LOGICAL            LQUERY
  203:       INTEGER            BL, CHUNK, I, IASCL, IBSCL, IE, IL, IRWORK,
  204:      $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
  205:      $                   MAXWRK, MINMN, MINWRK, MM, MNTHR
  206:       INTEGER            LWORK_ZGEQRF, LWORK_ZUNMQR, LWORK_ZGEBRD,
  207:      $                   LWORK_ZUNMBR, LWORK_ZUNGBR, LWORK_ZUNMLQ,
  208:      $                   LWORK_ZGELQF
  209:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
  210: *     ..
  211: *     .. Local Arrays ..
  212:       COMPLEX*16         DUM( 1 )
  213: *     ..
  214: *     .. External Subroutines ..
  215:       EXTERNAL           DLABAD, DLASCL, DLASET, XERBLA, ZBDSQR, ZCOPY,
  216:      $                   ZDRSCL, ZGEBRD, ZGELQF, ZGEMM, ZGEMV, ZGEQRF,
  217:      $                   ZLACPY, ZLASCL, ZLASET, ZUNGBR, ZUNMBR, ZUNMLQ,
  218:      $                   ZUNMQR
  219: *     ..
  220: *     .. External Functions ..
  221:       INTEGER            ILAENV
  222:       DOUBLE PRECISION   DLAMCH, ZLANGE
  223:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
  224: *     ..
  225: *     .. Intrinsic Functions ..
  226:       INTRINSIC          MAX, MIN
  227: *     ..
  228: *     .. Executable Statements ..
  229: *
  230: *     Test the input arguments
  231: *
  232:       INFO = 0
  233:       MINMN = MIN( M, N )
  234:       MAXMN = MAX( M, N )
  235:       LQUERY = ( LWORK.EQ.-1 )
  236:       IF( M.LT.0 ) THEN
  237:          INFO = -1
  238:       ELSE IF( N.LT.0 ) THEN
  239:          INFO = -2
  240:       ELSE IF( NRHS.LT.0 ) THEN
  241:          INFO = -3
  242:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  243:          INFO = -5
  244:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
  245:          INFO = -7
  246:       END IF
  247: *
  248: *     Compute workspace
  249: *      (Note: Comments in the code beginning "Workspace:" describe the
  250: *       minimal amount of workspace needed at that point in the code,
  251: *       as well as the preferred amount for good performance.
  252: *       CWorkspace refers to complex workspace, and RWorkspace refers
  253: *       to real workspace. NB refers to the optimal block size for the
  254: *       immediately following subroutine, as returned by ILAENV.)
  255: *
  256:       IF( INFO.EQ.0 ) THEN
  257:          MINWRK = 1
  258:          MAXWRK = 1
  259:          IF( MINMN.GT.0 ) THEN
  260:             MM = M
  261:             MNTHR = ILAENV( 6, 'ZGELSS', ' ', M, N, NRHS, -1 )
  262:             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
  263: *
  264: *              Path 1a - overdetermined, with many more rows than
  265: *                        columns
  266: *
  267: *              Compute space needed for ZGEQRF
  268:                CALL ZGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
  269:                LWORK_ZGEQRF = INT( DUM(1) )
  270: *              Compute space needed for ZUNMQR
  271:                CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, DUM(1), B,
  272:      $                   LDB, DUM(1), -1, INFO )
  273:                LWORK_ZUNMQR = INT( DUM(1) )
  274:                MM = N
  275:                MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'ZGEQRF', ' ', M,
  276:      $                       N, -1, -1 ) )
  277:                MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1, 'ZUNMQR', 'LC',
  278:      $                       M, NRHS, N, -1 ) )
  279:             END IF
  280:             IF( M.GE.N ) THEN
  281: *
  282: *              Path 1 - overdetermined or exactly determined
  283: *
  284: *              Compute space needed for ZGEBRD
  285:                CALL ZGEBRD( MM, N, A, LDA, S, S, DUM(1), DUM(1), DUM(1),
  286:      $                      -1, INFO )
  287:                LWORK_ZGEBRD = INT( DUM(1) )
  288: *              Compute space needed for ZUNMBR
  289:                CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, DUM(1),
  290:      $                B, LDB, DUM(1), -1, INFO )
  291:                LWORK_ZUNMBR = INT( DUM(1) )
  292: *              Compute space needed for ZUNGBR
  293:                CALL ZUNGBR( 'P', N, N, N, A, LDA, DUM(1),
  294:      $                   DUM(1), -1, INFO )
  295:                LWORK_ZUNGBR = INT( DUM(1) )
  296: *              Compute total workspace needed
  297:                MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZGEBRD )
  298:                MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNMBR )
  299:                MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNGBR )
  300:                MAXWRK = MAX( MAXWRK, N*NRHS )
  301:                MINWRK = 2*N + MAX( NRHS, M )
  302:             END IF
  303:             IF( N.GT.M ) THEN
  304:                MINWRK = 2*M + MAX( NRHS, N )
  305:                IF( N.GE.MNTHR ) THEN
  306: *
  307: *                 Path 2a - underdetermined, with many more columns
  308: *                 than rows
  309: *
  310: *                 Compute space needed for ZGELQF
  311:                   CALL ZGELQF( M, N, A, LDA, DUM(1), DUM(1),
  312:      $                -1, INFO )
  313:                   LWORK_ZGELQF = INT( DUM(1) )
  314: *                 Compute space needed for ZGEBRD
  315:                   CALL ZGEBRD( M, M, A, LDA, S, S, DUM(1), DUM(1),
  316:      $                         DUM(1), -1, INFO )
  317:                   LWORK_ZGEBRD = INT( DUM(1) )
  318: *                 Compute space needed for ZUNMBR
  319:                   CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA,
  320:      $                DUM(1), B, LDB, DUM(1), -1, INFO )
  321:                   LWORK_ZUNMBR = INT( DUM(1) )
  322: *                 Compute space needed for ZUNGBR
  323:                   CALL ZUNGBR( 'P', M, M, M, A, LDA, DUM(1),
  324:      $                   DUM(1), -1, INFO )
  325:                   LWORK_ZUNGBR = INT( DUM(1) )
  326: *                 Compute space needed for ZUNMLQ
  327:                   CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, DUM(1),
  328:      $                 B, LDB, DUM(1), -1, INFO )
  329:                   LWORK_ZUNMLQ = INT( DUM(1) )
  330: *                 Compute total workspace needed
  331:                   MAXWRK = M + LWORK_ZGELQF
  332:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_ZGEBRD )
  333:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_ZUNMBR )
  334:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_ZUNGBR )
  335:                   IF( NRHS.GT.1 ) THEN
  336:                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
  337:                   ELSE
  338:                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
  339:                   END IF
  340:                   MAXWRK = MAX( MAXWRK, M + LWORK_ZUNMLQ )
  341:                ELSE
  342: *
  343: *                 Path 2 - underdetermined
  344: *
  345: *                 Compute space needed for ZGEBRD
  346:                   CALL ZGEBRD( M, N, A, LDA, S, S, DUM(1), DUM(1),
  347:      $                         DUM(1), -1, INFO )
  348:                   LWORK_ZGEBRD = INT( DUM(1) )
  349: *                 Compute space needed for ZUNMBR
  350:                   CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, A, LDA,
  351:      $                DUM(1), B, LDB, DUM(1), -1, INFO )
  352:                   LWORK_ZUNMBR = INT( DUM(1) )
  353: *                 Compute space needed for ZUNGBR
  354:                   CALL ZUNGBR( 'P', M, N, M, A, LDA, DUM(1),
  355:      $                   DUM(1), -1, INFO )
  356:                   LWORK_ZUNGBR = INT( DUM(1) )
  357:                   MAXWRK = 2*M + LWORK_ZGEBRD
  358:                   MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNMBR )
  359:                   MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNGBR )
  360:                   MAXWRK = MAX( MAXWRK, N*NRHS )
  361:                END IF
  362:             END IF
  363:             MAXWRK = MAX( MINWRK, MAXWRK )
  364:          END IF
  365:          WORK( 1 ) = MAXWRK
  366: *
  367:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
  368:      $      INFO = -12
  369:       END IF
  370: *
  371:       IF( INFO.NE.0 ) THEN
  372:          CALL XERBLA( 'ZGELSS', -INFO )
  373:          RETURN
  374:       ELSE IF( LQUERY ) THEN
  375:          RETURN
  376:       END IF
  377: *
  378: *     Quick return if possible
  379: *
  380:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  381:          RANK = 0
  382:          RETURN
  383:       END IF
  384: *
  385: *     Get machine parameters
  386: *
  387:       EPS = DLAMCH( 'P' )
  388:       SFMIN = DLAMCH( 'S' )
  389:       SMLNUM = SFMIN / EPS
  390:       BIGNUM = ONE / SMLNUM
  391:       CALL DLABAD( SMLNUM, BIGNUM )
  392: *
  393: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  394: *
  395:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  396:       IASCL = 0
  397:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  398: *
  399: *        Scale matrix norm up to SMLNUM
  400: *
  401:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  402:          IASCL = 1
  403:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  404: *
  405: *        Scale matrix norm down to BIGNUM
  406: *
  407:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  408:          IASCL = 2
  409:       ELSE IF( ANRM.EQ.ZERO ) THEN
  410: *
  411: *        Matrix all zero. Return zero solution.
  412: *
  413:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  414:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, MINMN )
  415:          RANK = 0
  416:          GO TO 70
  417:       END IF
  418: *
  419: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  420: *
  421:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
  422:       IBSCL = 0
  423:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  424: *
  425: *        Scale matrix norm up to SMLNUM
  426: *
  427:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  428:          IBSCL = 1
  429:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  430: *
  431: *        Scale matrix norm down to BIGNUM
  432: *
  433:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  434:          IBSCL = 2
  435:       END IF
  436: *
  437: *     Overdetermined case
  438: *
  439:       IF( M.GE.N ) THEN
  440: *
  441: *        Path 1 - overdetermined or exactly determined
  442: *
  443:          MM = M
  444:          IF( M.GE.MNTHR ) THEN
  445: *
  446: *           Path 1a - overdetermined, with many more rows than columns
  447: *
  448:             MM = N
  449:             ITAU = 1
  450:             IWORK = ITAU + N
  451: *
  452: *           Compute A=Q*R
  453: *           (CWorkspace: need 2*N, prefer N+N*NB)
  454: *           (RWorkspace: none)
  455: *
  456:             CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  457:      $                   LWORK-IWORK+1, INFO )
  458: *
  459: *           Multiply B by transpose(Q)
  460: *           (CWorkspace: need N+NRHS, prefer N+NRHS*NB)
  461: *           (RWorkspace: none)
  462: *
  463:             CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
  464:      $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  465: *
  466: *           Zero out below R
  467: *
  468:             IF( N.GT.1 )
  469:      $         CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
  470:      $                      LDA )
  471:          END IF
  472: *
  473:          IE = 1
  474:          ITAUQ = 1
  475:          ITAUP = ITAUQ + N
  476:          IWORK = ITAUP + N
  477: *
  478: *        Bidiagonalize R in A
  479: *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
  480: *        (RWorkspace: need N)
  481: *
  482:          CALL ZGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  483:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  484:      $                INFO )
  485: *
  486: *        Multiply B by transpose of left bidiagonalizing vectors of R
  487: *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
  488: *        (RWorkspace: none)
  489: *
  490:          CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
  491:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  492: *
  493: *        Generate right bidiagonalizing vectors of R in A
  494: *        (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  495: *        (RWorkspace: none)
  496: *
  497:          CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  498:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
  499:          IRWORK = IE + N
  500: *
  501: *        Perform bidiagonal QR iteration
  502: *          multiply B by transpose of left singular vectors
  503: *          compute right singular vectors in A
  504: *        (CWorkspace: none)
  505: *        (RWorkspace: need BDSPAC)
  506: *
  507:          CALL ZBDSQR( 'U', N, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
  508:      $                1, B, LDB, RWORK( IRWORK ), INFO )
  509:          IF( INFO.NE.0 )
  510:      $      GO TO 70
  511: *
  512: *        Multiply B by reciprocals of singular values
  513: *
  514:          THR = MAX( RCOND*S( 1 ), SFMIN )
  515:          IF( RCOND.LT.ZERO )
  516:      $      THR = MAX( EPS*S( 1 ), SFMIN )
  517:          RANK = 0
  518:          DO 10 I = 1, N
  519:             IF( S( I ).GT.THR ) THEN
  520:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
  521:                RANK = RANK + 1
  522:             ELSE
  523:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
  524:             END IF
  525:    10    CONTINUE
  526: *
  527: *        Multiply B by right singular vectors
  528: *        (CWorkspace: need N, prefer N*NRHS)
  529: *        (RWorkspace: none)
  530: *
  531:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
  532:             CALL ZGEMM( 'C', 'N', N, NRHS, N, CONE, A, LDA, B, LDB,
  533:      $                  CZERO, WORK, LDB )
  534:             CALL ZLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
  535:          ELSE IF( NRHS.GT.1 ) THEN
  536:             CHUNK = LWORK / N
  537:             DO 20 I = 1, NRHS, CHUNK
  538:                BL = MIN( NRHS-I+1, CHUNK )
  539:                CALL ZGEMM( 'C', 'N', N, BL, N, CONE, A, LDA, B( 1, I ),
  540:      $                     LDB, CZERO, WORK, N )
  541:                CALL ZLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
  542:    20       CONTINUE
  543:          ELSE
  544:             CALL ZGEMV( 'C', N, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
  545:             CALL ZCOPY( N, WORK, 1, B, 1 )
  546:          END IF
  547: *
  548:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.3*M+M*M+MAX( M, NRHS, N-2*M ) )
  549:      $          THEN
  550: *
  551: *        Underdetermined case, M much less than N
  552: *
  553: *        Path 2a - underdetermined, with many more columns than rows
  554: *        and sufficient workspace for an efficient algorithm
  555: *
  556:          LDWORK = M
  557:          IF( LWORK.GE.3*M+M*LDA+MAX( M, NRHS, N-2*M ) )
  558:      $      LDWORK = LDA
  559:          ITAU = 1
  560:          IWORK = M + 1
  561: *
  562: *        Compute A=L*Q
  563: *        (CWorkspace: need 2*M, prefer M+M*NB)
  564: *        (RWorkspace: none)
  565: *
  566:          CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  567:      $                LWORK-IWORK+1, INFO )
  568:          IL = IWORK
  569: *
  570: *        Copy L to WORK(IL), zeroing out above it
  571: *
  572:          CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
  573:          CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
  574:      $                LDWORK )
  575:          IE = 1
  576:          ITAUQ = IL + LDWORK*M
  577:          ITAUP = ITAUQ + M
  578:          IWORK = ITAUP + M
  579: *
  580: *        Bidiagonalize L in WORK(IL)
  581: *        (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
  582: *        (RWorkspace: need M)
  583: *
  584:          CALL ZGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
  585:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
  586:      $                LWORK-IWORK+1, INFO )
  587: *
  588: *        Multiply B by transpose of left bidiagonalizing vectors of L
  589: *        (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB)
  590: *        (RWorkspace: none)
  591: *
  592:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
  593:      $                WORK( ITAUQ ), B, LDB, WORK( IWORK ),
  594:      $                LWORK-IWORK+1, INFO )
  595: *
  596: *        Generate right bidiagonalizing vectors of R in WORK(IL)
  597: *        (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
  598: *        (RWorkspace: none)
  599: *
  600:          CALL ZUNGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
  601:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
  602:          IRWORK = IE + M
  603: *
  604: *        Perform bidiagonal QR iteration, computing right singular
  605: *        vectors of L in WORK(IL) and multiplying B by transpose of
  606: *        left singular vectors
  607: *        (CWorkspace: need M*M)
  608: *        (RWorkspace: need BDSPAC)
  609: *
  610:          CALL ZBDSQR( 'U', M, M, 0, NRHS, S, RWORK( IE ), WORK( IL ),
  611:      $                LDWORK, A, LDA, B, LDB, RWORK( IRWORK ), INFO )
  612:          IF( INFO.NE.0 )
  613:      $      GO TO 70
  614: *
  615: *        Multiply B by reciprocals of singular values
  616: *
  617:          THR = MAX( RCOND*S( 1 ), SFMIN )
  618:          IF( RCOND.LT.ZERO )
  619:      $      THR = MAX( EPS*S( 1 ), SFMIN )
  620:          RANK = 0
  621:          DO 30 I = 1, M
  622:             IF( S( I ).GT.THR ) THEN
  623:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
  624:                RANK = RANK + 1
  625:             ELSE
  626:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
  627:             END IF
  628:    30    CONTINUE
  629:          IWORK = IL + M*LDWORK
  630: *
  631: *        Multiply B by right singular vectors of L in WORK(IL)
  632: *        (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS)
  633: *        (RWorkspace: none)
  634: *
  635:          IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
  636:             CALL ZGEMM( 'C', 'N', M, NRHS, M, CONE, WORK( IL ), LDWORK,
  637:      $                  B, LDB, CZERO, WORK( IWORK ), LDB )
  638:             CALL ZLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
  639:          ELSE IF( NRHS.GT.1 ) THEN
  640:             CHUNK = ( LWORK-IWORK+1 ) / M
  641:             DO 40 I = 1, NRHS, CHUNK
  642:                BL = MIN( NRHS-I+1, CHUNK )
  643:                CALL ZGEMM( 'C', 'N', M, BL, M, CONE, WORK( IL ), LDWORK,
  644:      $                     B( 1, I ), LDB, CZERO, WORK( IWORK ), M )
  645:                CALL ZLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
  646:      $                      LDB )
  647:    40       CONTINUE
  648:          ELSE
  649:             CALL ZGEMV( 'C', M, M, CONE, WORK( IL ), LDWORK, B( 1, 1 ),
  650:      $                  1, CZERO, WORK( IWORK ), 1 )
  651:             CALL ZCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
  652:          END IF
  653: *
  654: *        Zero out below first M rows of B
  655: *
  656:          CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
  657:          IWORK = ITAU + M
  658: *
  659: *        Multiply transpose(Q) by B
  660: *        (CWorkspace: need M+NRHS, prefer M+NHRS*NB)
  661: *        (RWorkspace: none)
  662: *
  663:          CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
  664:      $                LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  665: *
  666:       ELSE
  667: *
  668: *        Path 2 - remaining underdetermined cases
  669: *
  670:          IE = 1
  671:          ITAUQ = 1
  672:          ITAUP = ITAUQ + M
  673:          IWORK = ITAUP + M
  674: *
  675: *        Bidiagonalize A
  676: *        (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB)
  677: *        (RWorkspace: need N)
  678: *
  679:          CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  680:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  681:      $                INFO )
  682: *
  683: *        Multiply B by transpose of left bidiagonalizing vectors
  684: *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
  685: *        (RWorkspace: none)
  686: *
  687:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
  688:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  689: *
  690: *        Generate right bidiagonalizing vectors in A
  691: *        (CWorkspace: need 3*M, prefer 2*M+M*NB)
  692: *        (RWorkspace: none)
  693: *
  694:          CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  695:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
  696:          IRWORK = IE + M
  697: *
  698: *        Perform bidiagonal QR iteration,
  699: *           computing right singular vectors of A in A and
  700: *           multiplying B by transpose of left singular vectors
  701: *        (CWorkspace: none)
  702: *        (RWorkspace: need BDSPAC)
  703: *
  704:          CALL ZBDSQR( 'L', M, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
  705:      $                1, B, LDB, RWORK( IRWORK ), INFO )
  706:          IF( INFO.NE.0 )
  707:      $      GO TO 70
  708: *
  709: *        Multiply B by reciprocals of singular values
  710: *
  711:          THR = MAX( RCOND*S( 1 ), SFMIN )
  712:          IF( RCOND.LT.ZERO )
  713:      $      THR = MAX( EPS*S( 1 ), SFMIN )
  714:          RANK = 0
  715:          DO 50 I = 1, M
  716:             IF( S( I ).GT.THR ) THEN
  717:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
  718:                RANK = RANK + 1
  719:             ELSE
  720:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
  721:             END IF
  722:    50    CONTINUE
  723: *
  724: *        Multiply B by right singular vectors of A
  725: *        (CWorkspace: need N, prefer N*NRHS)
  726: *        (RWorkspace: none)
  727: *
  728:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
  729:             CALL ZGEMM( 'C', 'N', N, NRHS, M, CONE, A, LDA, B, LDB,
  730:      $                  CZERO, WORK, LDB )
  731:             CALL ZLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
  732:          ELSE IF( NRHS.GT.1 ) THEN
  733:             CHUNK = LWORK / N
  734:             DO 60 I = 1, NRHS, CHUNK
  735:                BL = MIN( NRHS-I+1, CHUNK )
  736:                CALL ZGEMM( 'C', 'N', N, BL, M, CONE, A, LDA, B( 1, I ),
  737:      $                     LDB, CZERO, WORK, N )
  738:                CALL ZLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
  739:    60       CONTINUE
  740:          ELSE
  741:             CALL ZGEMV( 'C', M, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
  742:             CALL ZCOPY( N, WORK, 1, B, 1 )
  743:          END IF
  744:       END IF
  745: *
  746: *     Undo scaling
  747: *
  748:       IF( IASCL.EQ.1 ) THEN
  749:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  750:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  751:      $                INFO )
  752:       ELSE IF( IASCL.EQ.2 ) THEN
  753:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  754:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  755:      $                INFO )
  756:       END IF
  757:       IF( IBSCL.EQ.1 ) THEN
  758:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  759:       ELSE IF( IBSCL.EQ.2 ) THEN
  760:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  761:       END IF
  762:    70 CONTINUE
  763:       WORK( 1 ) = MAXWRK
  764:       RETURN
  765: *
  766: *     End of ZGELSS
  767: *
  768:       END

CVSweb interface <joel.bertrand@systella.fr>