Annotation of rpl/lapack/lapack/zgelss.f, revision 1.18

1.8       bertrand    1: *> \brief <b> ZGELSS solves overdetermined or underdetermined systems for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZGELSS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelss.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelss.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelss.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
                     22: *                          WORK, LWORK, RWORK, INFO )
1.15      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                     26: *       DOUBLE PRECISION   RCOND
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   RWORK( * ), S( * )
                     30: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     31: *       ..
1.15      bertrand   32: *
1.8       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> ZGELSS computes the minimum norm solution to a complex linear
                     40: *> least squares problem:
                     41: *>
                     42: *> Minimize 2-norm(| b - A*x |).
                     43: *>
                     44: *> using the singular value decomposition (SVD) of A. A is an M-by-N
                     45: *> matrix which may be rank-deficient.
                     46: *>
                     47: *> Several right hand side vectors b and solution vectors x can be
                     48: *> handled in a single call; they are stored as the columns of the
                     49: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
                     50: *> X.
                     51: *>
                     52: *> The effective rank of A is determined by treating as zero those
                     53: *> singular values which are less than RCOND times the largest singular
                     54: *> value.
                     55: *> \endverbatim
                     56: *
                     57: *  Arguments:
                     58: *  ==========
                     59: *
                     60: *> \param[in] M
                     61: *> \verbatim
                     62: *>          M is INTEGER
                     63: *>          The number of rows of the matrix A. M >= 0.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] N
                     67: *> \verbatim
                     68: *>          N is INTEGER
                     69: *>          The number of columns of the matrix A. N >= 0.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] NRHS
                     73: *> \verbatim
                     74: *>          NRHS is INTEGER
                     75: *>          The number of right hand sides, i.e., the number of columns
                     76: *>          of the matrices B and X. NRHS >= 0.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in,out] A
                     80: *> \verbatim
                     81: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     82: *>          On entry, the M-by-N matrix A.
                     83: *>          On exit, the first min(m,n) rows of A are overwritten with
                     84: *>          its right singular vectors, stored rowwise.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] LDA
                     88: *> \verbatim
                     89: *>          LDA is INTEGER
                     90: *>          The leading dimension of the array A. LDA >= max(1,M).
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in,out] B
                     94: *> \verbatim
                     95: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                     96: *>          On entry, the M-by-NRHS right hand side matrix B.
                     97: *>          On exit, B is overwritten by the N-by-NRHS solution matrix X.
                     98: *>          If m >= n and RANK = n, the residual sum-of-squares for
                     99: *>          the solution in the i-th column is given by the sum of
                    100: *>          squares of the modulus of elements n+1:m in that column.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDB
                    104: *> \verbatim
                    105: *>          LDB is INTEGER
                    106: *>          The leading dimension of the array B.  LDB >= max(1,M,N).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[out] S
                    110: *> \verbatim
                    111: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
                    112: *>          The singular values of A in decreasing order.
                    113: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] RCOND
                    117: *> \verbatim
                    118: *>          RCOND is DOUBLE PRECISION
                    119: *>          RCOND is used to determine the effective rank of A.
                    120: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
                    121: *>          If RCOND < 0, machine precision is used instead.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[out] RANK
                    125: *> \verbatim
                    126: *>          RANK is INTEGER
                    127: *>          The effective rank of A, i.e., the number of singular values
                    128: *>          which are greater than RCOND*S(1).
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] WORK
                    132: *> \verbatim
                    133: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    134: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in] LWORK
                    138: *> \verbatim
                    139: *>          LWORK is INTEGER
                    140: *>          The dimension of the array WORK. LWORK >= 1, and also:
                    141: *>          LWORK >=  2*min(M,N) + max(M,N,NRHS)
                    142: *>          For good performance, LWORK should generally be larger.
                    143: *>
                    144: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    145: *>          only calculates the optimal size of the WORK array, returns
                    146: *>          this value as the first entry of the WORK array, and no error
                    147: *>          message related to LWORK is issued by XERBLA.
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[out] RWORK
                    151: *> \verbatim
                    152: *>          RWORK is DOUBLE PRECISION array, dimension (5*min(M,N))
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[out] INFO
                    156: *> \verbatim
                    157: *>          INFO is INTEGER
                    158: *>          = 0:  successful exit
                    159: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    160: *>          > 0:  the algorithm for computing the SVD failed to converge;
                    161: *>                if INFO = i, i off-diagonal elements of an intermediate
                    162: *>                bidiagonal form did not converge to zero.
                    163: *> \endverbatim
                    164: *
                    165: *  Authors:
                    166: *  ========
                    167: *
1.15      bertrand  168: *> \author Univ. of Tennessee
                    169: *> \author Univ. of California Berkeley
                    170: *> \author Univ. of Colorado Denver
                    171: *> \author NAG Ltd.
1.8       bertrand  172: *
                    173: *> \ingroup complex16GEsolve
                    174: *
                    175: *  =====================================================================
1.1       bertrand  176:       SUBROUTINE ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
                    177:      $                   WORK, LWORK, RWORK, INFO )
                    178: *
1.18    ! bertrand  179: *  -- LAPACK driver routine --
1.1       bertrand  180: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    181: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    182: *
                    183: *     .. Scalar Arguments ..
                    184:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                    185:       DOUBLE PRECISION   RCOND
                    186: *     ..
                    187: *     .. Array Arguments ..
                    188:       DOUBLE PRECISION   RWORK( * ), S( * )
                    189:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    190: *     ..
                    191: *
                    192: *  =====================================================================
                    193: *
                    194: *     .. Parameters ..
                    195:       DOUBLE PRECISION   ZERO, ONE
                    196:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    197:       COMPLEX*16         CZERO, CONE
                    198:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    199:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
                    200: *     ..
                    201: *     .. Local Scalars ..
                    202:       LOGICAL            LQUERY
                    203:       INTEGER            BL, CHUNK, I, IASCL, IBSCL, IE, IL, IRWORK,
                    204:      $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
                    205:      $                   MAXWRK, MINMN, MINWRK, MM, MNTHR
1.8       bertrand  206:       INTEGER            LWORK_ZGEQRF, LWORK_ZUNMQR, LWORK_ZGEBRD,
                    207:      $                   LWORK_ZUNMBR, LWORK_ZUNGBR, LWORK_ZUNMLQ,
                    208:      $                   LWORK_ZGELQF
1.1       bertrand  209:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
                    210: *     ..
                    211: *     .. Local Arrays ..
1.8       bertrand  212:       COMPLEX*16         DUM( 1 )
1.1       bertrand  213: *     ..
                    214: *     .. External Subroutines ..
                    215:       EXTERNAL           DLABAD, DLASCL, DLASET, XERBLA, ZBDSQR, ZCOPY,
                    216:      $                   ZDRSCL, ZGEBRD, ZGELQF, ZGEMM, ZGEMV, ZGEQRF,
                    217:      $                   ZLACPY, ZLASCL, ZLASET, ZUNGBR, ZUNMBR, ZUNMLQ,
                    218:      $                   ZUNMQR
                    219: *     ..
                    220: *     .. External Functions ..
                    221:       INTEGER            ILAENV
                    222:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    223:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
                    224: *     ..
                    225: *     .. Intrinsic Functions ..
                    226:       INTRINSIC          MAX, MIN
                    227: *     ..
                    228: *     .. Executable Statements ..
                    229: *
                    230: *     Test the input arguments
                    231: *
                    232:       INFO = 0
                    233:       MINMN = MIN( M, N )
                    234:       MAXMN = MAX( M, N )
                    235:       LQUERY = ( LWORK.EQ.-1 )
                    236:       IF( M.LT.0 ) THEN
                    237:          INFO = -1
                    238:       ELSE IF( N.LT.0 ) THEN
                    239:          INFO = -2
                    240:       ELSE IF( NRHS.LT.0 ) THEN
                    241:          INFO = -3
                    242:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    243:          INFO = -5
                    244:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
                    245:          INFO = -7
                    246:       END IF
                    247: *
                    248: *     Compute workspace
                    249: *      (Note: Comments in the code beginning "Workspace:" describe the
                    250: *       minimal amount of workspace needed at that point in the code,
                    251: *       as well as the preferred amount for good performance.
                    252: *       CWorkspace refers to complex workspace, and RWorkspace refers
                    253: *       to real workspace. NB refers to the optimal block size for the
                    254: *       immediately following subroutine, as returned by ILAENV.)
                    255: *
                    256:       IF( INFO.EQ.0 ) THEN
                    257:          MINWRK = 1
                    258:          MAXWRK = 1
                    259:          IF( MINMN.GT.0 ) THEN
                    260:             MM = M
                    261:             MNTHR = ILAENV( 6, 'ZGELSS', ' ', M, N, NRHS, -1 )
                    262:             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
                    263: *
                    264: *              Path 1a - overdetermined, with many more rows than
                    265: *                        columns
                    266: *
1.8       bertrand  267: *              Compute space needed for ZGEQRF
                    268:                CALL ZGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
1.18    ! bertrand  269:                LWORK_ZGEQRF = INT( DUM(1) )
1.8       bertrand  270: *              Compute space needed for ZUNMQR
                    271:                CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, DUM(1), B,
                    272:      $                   LDB, DUM(1), -1, INFO )
1.18    ! bertrand  273:                LWORK_ZUNMQR = INT( DUM(1) )
1.1       bertrand  274:                MM = N
                    275:                MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'ZGEQRF', ' ', M,
                    276:      $                       N, -1, -1 ) )
                    277:                MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1, 'ZUNMQR', 'LC',
                    278:      $                       M, NRHS, N, -1 ) )
                    279:             END IF
                    280:             IF( M.GE.N ) THEN
                    281: *
                    282: *              Path 1 - overdetermined or exactly determined
                    283: *
1.8       bertrand  284: *              Compute space needed for ZGEBRD
1.13      bertrand  285:                CALL ZGEBRD( MM, N, A, LDA, S, S, DUM(1), DUM(1), DUM(1),
                    286:      $                      -1, INFO )
1.18    ! bertrand  287:                LWORK_ZGEBRD = INT( DUM(1) )
1.8       bertrand  288: *              Compute space needed for ZUNMBR
                    289:                CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, DUM(1),
                    290:      $                B, LDB, DUM(1), -1, INFO )
1.18    ! bertrand  291:                LWORK_ZUNMBR = INT( DUM(1) )
1.8       bertrand  292: *              Compute space needed for ZUNGBR
                    293:                CALL ZUNGBR( 'P', N, N, N, A, LDA, DUM(1),
                    294:      $                   DUM(1), -1, INFO )
1.18    ! bertrand  295:                LWORK_ZUNGBR = INT( DUM(1) )
1.15      bertrand  296: *              Compute total workspace needed
1.8       bertrand  297:                MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZGEBRD )
                    298:                MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNMBR )
                    299:                MAXWRK = MAX( MAXWRK, 2*N + LWORK_ZUNGBR )
1.1       bertrand  300:                MAXWRK = MAX( MAXWRK, N*NRHS )
                    301:                MINWRK = 2*N + MAX( NRHS, M )
                    302:             END IF
                    303:             IF( N.GT.M ) THEN
                    304:                MINWRK = 2*M + MAX( NRHS, N )
                    305:                IF( N.GE.MNTHR ) THEN
                    306: *
                    307: *                 Path 2a - underdetermined, with many more columns
                    308: *                 than rows
                    309: *
1.8       bertrand  310: *                 Compute space needed for ZGELQF
                    311:                   CALL ZGELQF( M, N, A, LDA, DUM(1), DUM(1),
                    312:      $                -1, INFO )
1.18    ! bertrand  313:                   LWORK_ZGELQF = INT( DUM(1) )
1.8       bertrand  314: *                 Compute space needed for ZGEBRD
1.13      bertrand  315:                   CALL ZGEBRD( M, M, A, LDA, S, S, DUM(1), DUM(1),
                    316:      $                         DUM(1), -1, INFO )
1.18    ! bertrand  317:                   LWORK_ZGEBRD = INT( DUM(1) )
1.8       bertrand  318: *                 Compute space needed for ZUNMBR
1.15      bertrand  319:                   CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA,
1.8       bertrand  320:      $                DUM(1), B, LDB, DUM(1), -1, INFO )
1.18    ! bertrand  321:                   LWORK_ZUNMBR = INT( DUM(1) )
1.8       bertrand  322: *                 Compute space needed for ZUNGBR
                    323:                   CALL ZUNGBR( 'P', M, M, M, A, LDA, DUM(1),
                    324:      $                   DUM(1), -1, INFO )
1.18    ! bertrand  325:                   LWORK_ZUNGBR = INT( DUM(1) )
1.8       bertrand  326: *                 Compute space needed for ZUNMLQ
                    327:                   CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, DUM(1),
                    328:      $                 B, LDB, DUM(1), -1, INFO )
1.18    ! bertrand  329:                   LWORK_ZUNMLQ = INT( DUM(1) )
1.15      bertrand  330: *                 Compute total workspace needed
1.8       bertrand  331:                   MAXWRK = M + LWORK_ZGELQF
                    332:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_ZGEBRD )
                    333:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_ZUNMBR )
                    334:                   MAXWRK = MAX( MAXWRK, 3*M + M*M + LWORK_ZUNGBR )
1.1       bertrand  335:                   IF( NRHS.GT.1 ) THEN
                    336:                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
                    337:                   ELSE
                    338:                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
                    339:                   END IF
1.8       bertrand  340:                   MAXWRK = MAX( MAXWRK, M + LWORK_ZUNMLQ )
1.1       bertrand  341:                ELSE
                    342: *
                    343: *                 Path 2 - underdetermined
                    344: *
1.8       bertrand  345: *                 Compute space needed for ZGEBRD
1.13      bertrand  346:                   CALL ZGEBRD( M, N, A, LDA, S, S, DUM(1), DUM(1),
                    347:      $                         DUM(1), -1, INFO )
1.18    ! bertrand  348:                   LWORK_ZGEBRD = INT( DUM(1) )
1.8       bertrand  349: *                 Compute space needed for ZUNMBR
1.15      bertrand  350:                   CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, A, LDA,
1.8       bertrand  351:      $                DUM(1), B, LDB, DUM(1), -1, INFO )
1.18    ! bertrand  352:                   LWORK_ZUNMBR = INT( DUM(1) )
1.8       bertrand  353: *                 Compute space needed for ZUNGBR
                    354:                   CALL ZUNGBR( 'P', M, N, M, A, LDA, DUM(1),
                    355:      $                   DUM(1), -1, INFO )
1.18    ! bertrand  356:                   LWORK_ZUNGBR = INT( DUM(1) )
1.8       bertrand  357:                   MAXWRK = 2*M + LWORK_ZGEBRD
                    358:                   MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNMBR )
                    359:                   MAXWRK = MAX( MAXWRK, 2*M + LWORK_ZUNGBR )
1.1       bertrand  360:                   MAXWRK = MAX( MAXWRK, N*NRHS )
                    361:                END IF
                    362:             END IF
                    363:             MAXWRK = MAX( MINWRK, MAXWRK )
                    364:          END IF
                    365:          WORK( 1 ) = MAXWRK
                    366: *
                    367:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
                    368:      $      INFO = -12
                    369:       END IF
                    370: *
                    371:       IF( INFO.NE.0 ) THEN
                    372:          CALL XERBLA( 'ZGELSS', -INFO )
                    373:          RETURN
                    374:       ELSE IF( LQUERY ) THEN
                    375:          RETURN
                    376:       END IF
                    377: *
                    378: *     Quick return if possible
                    379: *
                    380:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
                    381:          RANK = 0
                    382:          RETURN
                    383:       END IF
                    384: *
                    385: *     Get machine parameters
                    386: *
                    387:       EPS = DLAMCH( 'P' )
                    388:       SFMIN = DLAMCH( 'S' )
                    389:       SMLNUM = SFMIN / EPS
                    390:       BIGNUM = ONE / SMLNUM
                    391:       CALL DLABAD( SMLNUM, BIGNUM )
                    392: *
                    393: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    394: *
                    395:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
                    396:       IASCL = 0
                    397:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    398: *
                    399: *        Scale matrix norm up to SMLNUM
                    400: *
                    401:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    402:          IASCL = 1
                    403:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    404: *
                    405: *        Scale matrix norm down to BIGNUM
                    406: *
                    407:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    408:          IASCL = 2
                    409:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    410: *
                    411: *        Matrix all zero. Return zero solution.
                    412: *
                    413:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    414:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, MINMN )
                    415:          RANK = 0
                    416:          GO TO 70
                    417:       END IF
                    418: *
                    419: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    420: *
                    421:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
                    422:       IBSCL = 0
                    423:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    424: *
                    425: *        Scale matrix norm up to SMLNUM
                    426: *
                    427:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    428:          IBSCL = 1
                    429:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    430: *
                    431: *        Scale matrix norm down to BIGNUM
                    432: *
                    433:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    434:          IBSCL = 2
                    435:       END IF
                    436: *
                    437: *     Overdetermined case
                    438: *
                    439:       IF( M.GE.N ) THEN
                    440: *
                    441: *        Path 1 - overdetermined or exactly determined
                    442: *
                    443:          MM = M
                    444:          IF( M.GE.MNTHR ) THEN
                    445: *
                    446: *           Path 1a - overdetermined, with many more rows than columns
                    447: *
                    448:             MM = N
                    449:             ITAU = 1
                    450:             IWORK = ITAU + N
                    451: *
                    452: *           Compute A=Q*R
                    453: *           (CWorkspace: need 2*N, prefer N+N*NB)
                    454: *           (RWorkspace: none)
                    455: *
                    456:             CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
                    457:      $                   LWORK-IWORK+1, INFO )
                    458: *
                    459: *           Multiply B by transpose(Q)
                    460: *           (CWorkspace: need N+NRHS, prefer N+NRHS*NB)
                    461: *           (RWorkspace: none)
                    462: *
                    463:             CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
                    464:      $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
                    465: *
                    466: *           Zero out below R
                    467: *
                    468:             IF( N.GT.1 )
                    469:      $         CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
                    470:      $                      LDA )
                    471:          END IF
                    472: *
                    473:          IE = 1
                    474:          ITAUQ = 1
                    475:          ITAUP = ITAUQ + N
                    476:          IWORK = ITAUP + N
                    477: *
                    478: *        Bidiagonalize R in A
                    479: *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
                    480: *        (RWorkspace: need N)
                    481: *
                    482:          CALL ZGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
                    483:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
                    484:      $                INFO )
                    485: *
                    486: *        Multiply B by transpose of left bidiagonalizing vectors of R
                    487: *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
                    488: *        (RWorkspace: none)
                    489: *
                    490:          CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
                    491:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
                    492: *
                    493: *        Generate right bidiagonalizing vectors of R in A
                    494: *        (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
                    495: *        (RWorkspace: none)
                    496: *
                    497:          CALL ZUNGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
                    498:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
                    499:          IRWORK = IE + N
                    500: *
                    501: *        Perform bidiagonal QR iteration
                    502: *          multiply B by transpose of left singular vectors
                    503: *          compute right singular vectors in A
                    504: *        (CWorkspace: none)
                    505: *        (RWorkspace: need BDSPAC)
                    506: *
1.8       bertrand  507:          CALL ZBDSQR( 'U', N, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
1.1       bertrand  508:      $                1, B, LDB, RWORK( IRWORK ), INFO )
                    509:          IF( INFO.NE.0 )
                    510:      $      GO TO 70
                    511: *
                    512: *        Multiply B by reciprocals of singular values
                    513: *
                    514:          THR = MAX( RCOND*S( 1 ), SFMIN )
                    515:          IF( RCOND.LT.ZERO )
                    516:      $      THR = MAX( EPS*S( 1 ), SFMIN )
                    517:          RANK = 0
                    518:          DO 10 I = 1, N
                    519:             IF( S( I ).GT.THR ) THEN
                    520:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
                    521:                RANK = RANK + 1
                    522:             ELSE
                    523:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
                    524:             END IF
                    525:    10    CONTINUE
                    526: *
                    527: *        Multiply B by right singular vectors
                    528: *        (CWorkspace: need N, prefer N*NRHS)
                    529: *        (RWorkspace: none)
                    530: *
                    531:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
                    532:             CALL ZGEMM( 'C', 'N', N, NRHS, N, CONE, A, LDA, B, LDB,
                    533:      $                  CZERO, WORK, LDB )
                    534:             CALL ZLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
                    535:          ELSE IF( NRHS.GT.1 ) THEN
                    536:             CHUNK = LWORK / N
                    537:             DO 20 I = 1, NRHS, CHUNK
                    538:                BL = MIN( NRHS-I+1, CHUNK )
                    539:                CALL ZGEMM( 'C', 'N', N, BL, N, CONE, A, LDA, B( 1, I ),
                    540:      $                     LDB, CZERO, WORK, N )
                    541:                CALL ZLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
                    542:    20       CONTINUE
                    543:          ELSE
                    544:             CALL ZGEMV( 'C', N, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
                    545:             CALL ZCOPY( N, WORK, 1, B, 1 )
                    546:          END IF
                    547: *
                    548:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.3*M+M*M+MAX( M, NRHS, N-2*M ) )
                    549:      $          THEN
                    550: *
                    551: *        Underdetermined case, M much less than N
                    552: *
                    553: *        Path 2a - underdetermined, with many more columns than rows
                    554: *        and sufficient workspace for an efficient algorithm
                    555: *
                    556:          LDWORK = M
                    557:          IF( LWORK.GE.3*M+M*LDA+MAX( M, NRHS, N-2*M ) )
                    558:      $      LDWORK = LDA
                    559:          ITAU = 1
                    560:          IWORK = M + 1
                    561: *
                    562: *        Compute A=L*Q
                    563: *        (CWorkspace: need 2*M, prefer M+M*NB)
                    564: *        (RWorkspace: none)
                    565: *
                    566:          CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
                    567:      $                LWORK-IWORK+1, INFO )
                    568:          IL = IWORK
                    569: *
                    570: *        Copy L to WORK(IL), zeroing out above it
                    571: *
                    572:          CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
                    573:          CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
                    574:      $                LDWORK )
                    575:          IE = 1
                    576:          ITAUQ = IL + LDWORK*M
                    577:          ITAUP = ITAUQ + M
                    578:          IWORK = ITAUP + M
                    579: *
                    580: *        Bidiagonalize L in WORK(IL)
                    581: *        (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
                    582: *        (RWorkspace: need M)
                    583: *
                    584:          CALL ZGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
                    585:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
                    586:      $                LWORK-IWORK+1, INFO )
                    587: *
                    588: *        Multiply B by transpose of left bidiagonalizing vectors of L
                    589: *        (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB)
                    590: *        (RWorkspace: none)
                    591: *
                    592:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
                    593:      $                WORK( ITAUQ ), B, LDB, WORK( IWORK ),
                    594:      $                LWORK-IWORK+1, INFO )
                    595: *
                    596: *        Generate right bidiagonalizing vectors of R in WORK(IL)
                    597: *        (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
                    598: *        (RWorkspace: none)
                    599: *
                    600:          CALL ZUNGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
                    601:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
                    602:          IRWORK = IE + M
                    603: *
                    604: *        Perform bidiagonal QR iteration, computing right singular
                    605: *        vectors of L in WORK(IL) and multiplying B by transpose of
                    606: *        left singular vectors
                    607: *        (CWorkspace: need M*M)
                    608: *        (RWorkspace: need BDSPAC)
                    609: *
                    610:          CALL ZBDSQR( 'U', M, M, 0, NRHS, S, RWORK( IE ), WORK( IL ),
                    611:      $                LDWORK, A, LDA, B, LDB, RWORK( IRWORK ), INFO )
                    612:          IF( INFO.NE.0 )
                    613:      $      GO TO 70
                    614: *
                    615: *        Multiply B by reciprocals of singular values
                    616: *
                    617:          THR = MAX( RCOND*S( 1 ), SFMIN )
                    618:          IF( RCOND.LT.ZERO )
                    619:      $      THR = MAX( EPS*S( 1 ), SFMIN )
                    620:          RANK = 0
                    621:          DO 30 I = 1, M
                    622:             IF( S( I ).GT.THR ) THEN
                    623:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
                    624:                RANK = RANK + 1
                    625:             ELSE
                    626:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
                    627:             END IF
                    628:    30    CONTINUE
                    629:          IWORK = IL + M*LDWORK
                    630: *
                    631: *        Multiply B by right singular vectors of L in WORK(IL)
                    632: *        (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS)
                    633: *        (RWorkspace: none)
                    634: *
                    635:          IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
                    636:             CALL ZGEMM( 'C', 'N', M, NRHS, M, CONE, WORK( IL ), LDWORK,
                    637:      $                  B, LDB, CZERO, WORK( IWORK ), LDB )
                    638:             CALL ZLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
                    639:          ELSE IF( NRHS.GT.1 ) THEN
                    640:             CHUNK = ( LWORK-IWORK+1 ) / M
                    641:             DO 40 I = 1, NRHS, CHUNK
                    642:                BL = MIN( NRHS-I+1, CHUNK )
                    643:                CALL ZGEMM( 'C', 'N', M, BL, M, CONE, WORK( IL ), LDWORK,
                    644:      $                     B( 1, I ), LDB, CZERO, WORK( IWORK ), M )
                    645:                CALL ZLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
                    646:      $                      LDB )
                    647:    40       CONTINUE
                    648:          ELSE
                    649:             CALL ZGEMV( 'C', M, M, CONE, WORK( IL ), LDWORK, B( 1, 1 ),
                    650:      $                  1, CZERO, WORK( IWORK ), 1 )
                    651:             CALL ZCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
                    652:          END IF
                    653: *
                    654: *        Zero out below first M rows of B
                    655: *
                    656:          CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
                    657:          IWORK = ITAU + M
                    658: *
                    659: *        Multiply transpose(Q) by B
                    660: *        (CWorkspace: need M+NRHS, prefer M+NHRS*NB)
                    661: *        (RWorkspace: none)
                    662: *
                    663:          CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
                    664:      $                LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
                    665: *
                    666:       ELSE
                    667: *
                    668: *        Path 2 - remaining underdetermined cases
                    669: *
                    670:          IE = 1
                    671:          ITAUQ = 1
                    672:          ITAUP = ITAUQ + M
                    673:          IWORK = ITAUP + M
                    674: *
                    675: *        Bidiagonalize A
                    676: *        (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB)
                    677: *        (RWorkspace: need N)
                    678: *
                    679:          CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
                    680:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
                    681:      $                INFO )
                    682: *
                    683: *        Multiply B by transpose of left bidiagonalizing vectors
                    684: *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
                    685: *        (RWorkspace: none)
                    686: *
                    687:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
                    688:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
                    689: *
                    690: *        Generate right bidiagonalizing vectors in A
                    691: *        (CWorkspace: need 3*M, prefer 2*M+M*NB)
                    692: *        (RWorkspace: none)
                    693: *
                    694:          CALL ZUNGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
                    695:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
                    696:          IRWORK = IE + M
                    697: *
                    698: *        Perform bidiagonal QR iteration,
                    699: *           computing right singular vectors of A in A and
                    700: *           multiplying B by transpose of left singular vectors
                    701: *        (CWorkspace: none)
                    702: *        (RWorkspace: need BDSPAC)
                    703: *
1.8       bertrand  704:          CALL ZBDSQR( 'L', M, N, 0, NRHS, S, RWORK( IE ), A, LDA, DUM,
1.1       bertrand  705:      $                1, B, LDB, RWORK( IRWORK ), INFO )
                    706:          IF( INFO.NE.0 )
                    707:      $      GO TO 70
                    708: *
                    709: *        Multiply B by reciprocals of singular values
                    710: *
                    711:          THR = MAX( RCOND*S( 1 ), SFMIN )
                    712:          IF( RCOND.LT.ZERO )
                    713:      $      THR = MAX( EPS*S( 1 ), SFMIN )
                    714:          RANK = 0
                    715:          DO 50 I = 1, M
                    716:             IF( S( I ).GT.THR ) THEN
                    717:                CALL ZDRSCL( NRHS, S( I ), B( I, 1 ), LDB )
                    718:                RANK = RANK + 1
                    719:             ELSE
                    720:                CALL ZLASET( 'F', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
                    721:             END IF
                    722:    50    CONTINUE
                    723: *
                    724: *        Multiply B by right singular vectors of A
                    725: *        (CWorkspace: need N, prefer N*NRHS)
                    726: *        (RWorkspace: none)
                    727: *
                    728:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
                    729:             CALL ZGEMM( 'C', 'N', N, NRHS, M, CONE, A, LDA, B, LDB,
                    730:      $                  CZERO, WORK, LDB )
                    731:             CALL ZLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
                    732:          ELSE IF( NRHS.GT.1 ) THEN
                    733:             CHUNK = LWORK / N
                    734:             DO 60 I = 1, NRHS, CHUNK
                    735:                BL = MIN( NRHS-I+1, CHUNK )
                    736:                CALL ZGEMM( 'C', 'N', N, BL, M, CONE, A, LDA, B( 1, I ),
                    737:      $                     LDB, CZERO, WORK, N )
                    738:                CALL ZLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
                    739:    60       CONTINUE
                    740:          ELSE
                    741:             CALL ZGEMV( 'C', M, N, CONE, A, LDA, B, 1, CZERO, WORK, 1 )
                    742:             CALL ZCOPY( N, WORK, 1, B, 1 )
                    743:          END IF
                    744:       END IF
                    745: *
                    746: *     Undo scaling
                    747: *
                    748:       IF( IASCL.EQ.1 ) THEN
                    749:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    750:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
                    751:      $                INFO )
                    752:       ELSE IF( IASCL.EQ.2 ) THEN
                    753:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    754:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
                    755:      $                INFO )
                    756:       END IF
                    757:       IF( IBSCL.EQ.1 ) THEN
                    758:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    759:       ELSE IF( IBSCL.EQ.2 ) THEN
                    760:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    761:       END IF
                    762:    70 CONTINUE
                    763:       WORK( 1 ) = MAXWRK
                    764:       RETURN
                    765: *
                    766: *     End of ZGELSS
                    767: *
                    768:       END

CVSweb interface <joel.bertrand@systella.fr>