File:  [local] / rpl / lapack / lapack / zgelsd.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:17 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGELSD + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsd.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsd.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsd.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
   22: *                          WORK, LWORK, RWORK, IWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
   26: *       DOUBLE PRECISION   RCOND
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IWORK( * )
   30: *       DOUBLE PRECISION   RWORK( * ), S( * )
   31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZGELSD computes the minimum-norm solution to a real linear least
   41: *> squares problem:
   42: *>     minimize 2-norm(| b - A*x |)
   43: *> using the singular value decomposition (SVD) of A. A is an M-by-N
   44: *> matrix which may be rank-deficient.
   45: *>
   46: *> Several right hand side vectors b and solution vectors x can be
   47: *> handled in a single call; they are stored as the columns of the
   48: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   49: *> matrix X.
   50: *>
   51: *> The problem is solved in three steps:
   52: *> (1) Reduce the coefficient matrix A to bidiagonal form with
   53: *>     Householder transformations, reducing the original problem
   54: *>     into a "bidiagonal least squares problem" (BLS)
   55: *> (2) Solve the BLS using a divide and conquer approach.
   56: *> (3) Apply back all the Householder transformations to solve
   57: *>     the original least squares problem.
   58: *>
   59: *> The effective rank of A is determined by treating as zero those
   60: *> singular values which are less than RCOND times the largest singular
   61: *> value.
   62: *>
   63: *> The divide and conquer algorithm makes very mild assumptions about
   64: *> floating point arithmetic. It will work on machines with a guard
   65: *> digit in add/subtract, or on those binary machines without guard
   66: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
   67: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
   68: *> without guard digits, but we know of none.
   69: *> \endverbatim
   70: *
   71: *  Arguments:
   72: *  ==========
   73: *
   74: *> \param[in] M
   75: *> \verbatim
   76: *>          M is INTEGER
   77: *>          The number of rows of the matrix A. M >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>          The number of columns of the matrix A. N >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] NRHS
   87: *> \verbatim
   88: *>          NRHS is INTEGER
   89: *>          The number of right hand sides, i.e., the number of columns
   90: *>          of the matrices B and X. NRHS >= 0.
   91: *> \endverbatim
   92: *>
   93: *> \param[in,out] A
   94: *> \verbatim
   95: *>          A is COMPLEX*16 array, dimension (LDA,N)
   96: *>          On entry, the M-by-N matrix A.
   97: *>          On exit, A has been destroyed.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] LDA
  101: *> \verbatim
  102: *>          LDA is INTEGER
  103: *>          The leading dimension of the array A. LDA >= max(1,M).
  104: *> \endverbatim
  105: *>
  106: *> \param[in,out] B
  107: *> \verbatim
  108: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  109: *>          On entry, the M-by-NRHS right hand side matrix B.
  110: *>          On exit, B is overwritten by the N-by-NRHS solution matrix X.
  111: *>          If m >= n and RANK = n, the residual sum-of-squares for
  112: *>          the solution in the i-th column is given by the sum of
  113: *>          squares of the modulus of elements n+1:m in that column.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDB
  117: *> \verbatim
  118: *>          LDB is INTEGER
  119: *>          The leading dimension of the array B.  LDB >= max(1,M,N).
  120: *> \endverbatim
  121: *>
  122: *> \param[out] S
  123: *> \verbatim
  124: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
  125: *>          The singular values of A in decreasing order.
  126: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
  127: *> \endverbatim
  128: *>
  129: *> \param[in] RCOND
  130: *> \verbatim
  131: *>          RCOND is DOUBLE PRECISION
  132: *>          RCOND is used to determine the effective rank of A.
  133: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
  134: *>          If RCOND < 0, machine precision is used instead.
  135: *> \endverbatim
  136: *>
  137: *> \param[out] RANK
  138: *> \verbatim
  139: *>          RANK is INTEGER
  140: *>          The effective rank of A, i.e., the number of singular values
  141: *>          which are greater than RCOND*S(1).
  142: *> \endverbatim
  143: *>
  144: *> \param[out] WORK
  145: *> \verbatim
  146: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  147: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  148: *> \endverbatim
  149: *>
  150: *> \param[in] LWORK
  151: *> \verbatim
  152: *>          LWORK is INTEGER
  153: *>          The dimension of the array WORK. LWORK must be at least 1.
  154: *>          The exact minimum amount of workspace needed depends on M,
  155: *>          N and NRHS. As long as LWORK is at least
  156: *>              2*N + N*NRHS
  157: *>          if M is greater than or equal to N or
  158: *>              2*M + M*NRHS
  159: *>          if M is less than N, the code will execute correctly.
  160: *>          For good performance, LWORK should generally be larger.
  161: *>
  162: *>          If LWORK = -1, then a workspace query is assumed; the routine
  163: *>          only calculates the optimal size of the array WORK and the
  164: *>          minimum sizes of the arrays RWORK and IWORK, and returns
  165: *>          these values as the first entries of the WORK, RWORK and
  166: *>          IWORK arrays, and no error message related to LWORK is issued
  167: *>          by XERBLA.
  168: *> \endverbatim
  169: *>
  170: *> \param[out] RWORK
  171: *> \verbatim
  172: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  173: *>          LRWORK >=
  174: *>             10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
  175: *>             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
  176: *>          if M is greater than or equal to N or
  177: *>             10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
  178: *>             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
  179: *>          if M is less than N, the code will execute correctly.
  180: *>          SMLSIZ is returned by ILAENV and is equal to the maximum
  181: *>          size of the subproblems at the bottom of the computation
  182: *>          tree (usually about 25), and
  183: *>             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
  184: *>          On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK.
  185: *> \endverbatim
  186: *>
  187: *> \param[out] IWORK
  188: *> \verbatim
  189: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  190: *>          LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),
  191: *>          where MINMN = MIN( M,N ).
  192: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
  193: *> \endverbatim
  194: *>
  195: *> \param[out] INFO
  196: *> \verbatim
  197: *>          INFO is INTEGER
  198: *>          = 0: successful exit
  199: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
  200: *>          > 0:  the algorithm for computing the SVD failed to converge;
  201: *>                if INFO = i, i off-diagonal elements of an intermediate
  202: *>                bidiagonal form did not converge to zero.
  203: *> \endverbatim
  204: *
  205: *  Authors:
  206: *  ========
  207: *
  208: *> \author Univ. of Tennessee
  209: *> \author Univ. of California Berkeley
  210: *> \author Univ. of Colorado Denver
  211: *> \author NAG Ltd.
  212: *
  213: *> \ingroup complex16GEsolve
  214: *
  215: *> \par Contributors:
  216: *  ==================
  217: *>
  218: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
  219: *>       California at Berkeley, USA \n
  220: *>     Osni Marques, LBNL/NERSC, USA \n
  221: *
  222: *  =====================================================================
  223:       SUBROUTINE ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
  224:      $                   WORK, LWORK, RWORK, IWORK, INFO )
  225: *
  226: *  -- LAPACK driver routine --
  227: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  228: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  229: *
  230: *     .. Scalar Arguments ..
  231:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
  232:       DOUBLE PRECISION   RCOND
  233: *     ..
  234: *     .. Array Arguments ..
  235:       INTEGER            IWORK( * )
  236:       DOUBLE PRECISION   RWORK( * ), S( * )
  237:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
  238: *     ..
  239: *
  240: *  =====================================================================
  241: *
  242: *     .. Parameters ..
  243:       DOUBLE PRECISION   ZERO, ONE, TWO
  244:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  245:       COMPLEX*16         CZERO
  246:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  247: *     ..
  248: *     .. Local Scalars ..
  249:       LOGICAL            LQUERY
  250:       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
  251:      $                   LDWORK, LIWORK, LRWORK, MAXMN, MAXWRK, MINMN,
  252:      $                   MINWRK, MM, MNTHR, NLVL, NRWORK, NWORK, SMLSIZ
  253:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
  254: *     ..
  255: *     .. External Subroutines ..
  256:       EXTERNAL           DLABAD, DLASCL, DLASET, XERBLA, ZGEBRD, ZGELQF,
  257:      $                   ZGEQRF, ZLACPY, ZLALSD, ZLASCL, ZLASET, ZUNMBR,
  258:      $                   ZUNMLQ, ZUNMQR
  259: *     ..
  260: *     .. External Functions ..
  261:       INTEGER            ILAENV
  262:       DOUBLE PRECISION   DLAMCH, ZLANGE
  263:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
  264: *     ..
  265: *     .. Intrinsic Functions ..
  266:       INTRINSIC          INT, LOG, MAX, MIN, DBLE
  267: *     ..
  268: *     .. Executable Statements ..
  269: *
  270: *     Test the input arguments.
  271: *
  272:       INFO = 0
  273:       MINMN = MIN( M, N )
  274:       MAXMN = MAX( M, N )
  275:       LQUERY = ( LWORK.EQ.-1 )
  276:       IF( M.LT.0 ) THEN
  277:          INFO = -1
  278:       ELSE IF( N.LT.0 ) THEN
  279:          INFO = -2
  280:       ELSE IF( NRHS.LT.0 ) THEN
  281:          INFO = -3
  282:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  283:          INFO = -5
  284:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
  285:          INFO = -7
  286:       END IF
  287: *
  288: *     Compute workspace.
  289: *     (Note: Comments in the code beginning "Workspace:" describe the
  290: *     minimal amount of workspace needed at that point in the code,
  291: *     as well as the preferred amount for good performance.
  292: *     NB refers to the optimal block size for the immediately
  293: *     following subroutine, as returned by ILAENV.)
  294: *
  295:       IF( INFO.EQ.0 ) THEN
  296:          MINWRK = 1
  297:          MAXWRK = 1
  298:          LIWORK = 1
  299:          LRWORK = 1
  300:          IF( MINMN.GT.0 ) THEN
  301:             SMLSIZ = ILAENV( 9, 'ZGELSD', ' ', 0, 0, 0, 0 )
  302:             MNTHR = ILAENV( 6, 'ZGELSD', ' ', M, N, NRHS, -1 )
  303:             NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ + 1 ) ) /
  304:      $                  LOG( TWO ) ) + 1, 0 )
  305:             LIWORK = 3*MINMN*NLVL + 11*MINMN
  306:             MM = M
  307:             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
  308: *
  309: *              Path 1a - overdetermined, with many more rows than
  310: *                        columns.
  311: *
  312:                MM = N
  313:                MAXWRK = MAX( MAXWRK, N*ILAENV( 1, 'ZGEQRF', ' ', M, N,
  314:      $                       -1, -1 ) )
  315:                MAXWRK = MAX( MAXWRK, NRHS*ILAENV( 1, 'ZUNMQR', 'LC', M,
  316:      $                       NRHS, N, -1 ) )
  317:             END IF
  318:             IF( M.GE.N ) THEN
  319: *
  320: *              Path 1 - overdetermined or exactly determined.
  321: *
  322:                LRWORK = 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
  323:      $                  MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
  324:                MAXWRK = MAX( MAXWRK, 2*N + ( MM + N )*ILAENV( 1,
  325:      $                       'ZGEBRD', ' ', MM, N, -1, -1 ) )
  326:                MAXWRK = MAX( MAXWRK, 2*N + NRHS*ILAENV( 1, 'ZUNMBR',
  327:      $                       'QLC', MM, NRHS, N, -1 ) )
  328:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  329:      $                       'ZUNMBR', 'PLN', N, NRHS, N, -1 ) )
  330:                MAXWRK = MAX( MAXWRK, 2*N + N*NRHS )
  331:                MINWRK = MAX( 2*N + MM, 2*N + N*NRHS )
  332:             END IF
  333:             IF( N.GT.M ) THEN
  334:                LRWORK = 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
  335:      $                  MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
  336:                IF( N.GE.MNTHR ) THEN
  337: *
  338: *                 Path 2a - underdetermined, with many more columns
  339: *                           than rows.
  340: *
  341:                   MAXWRK = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1,
  342:      $                     -1 )
  343:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + 2*M*ILAENV( 1,
  344:      $                          'ZGEBRD', ' ', M, M, -1, -1 ) )
  345:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + NRHS*ILAENV( 1,
  346:      $                          'ZUNMBR', 'QLC', M, NRHS, M, -1 ) )
  347:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + ( M - 1 )*ILAENV( 1,
  348:      $                          'ZUNMLQ', 'LC', N, NRHS, M, -1 ) )
  349:                   IF( NRHS.GT.1 ) THEN
  350:                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
  351:                   ELSE
  352:                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
  353:                   END IF
  354:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + M*NRHS )
  355: !     XXX: Ensure the Path 2a case below is triggered.  The workspace
  356: !     calculation should use queries for all routines eventually.
  357:                   MAXWRK = MAX( MAXWRK,
  358:      $                 4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
  359:                ELSE
  360: *
  361: *                 Path 2 - underdetermined.
  362: *
  363:                   MAXWRK = 2*M + ( N + M )*ILAENV( 1, 'ZGEBRD', ' ', M,
  364:      $                     N, -1, -1 )
  365:                   MAXWRK = MAX( MAXWRK, 2*M + NRHS*ILAENV( 1, 'ZUNMBR',
  366:      $                          'QLC', M, NRHS, M, -1 ) )
  367:                   MAXWRK = MAX( MAXWRK, 2*M + M*ILAENV( 1, 'ZUNMBR',
  368:      $                          'PLN', N, NRHS, M, -1 ) )
  369:                   MAXWRK = MAX( MAXWRK, 2*M + M*NRHS )
  370:                END IF
  371:                MINWRK = MAX( 2*M + N, 2*M + M*NRHS )
  372:             END IF
  373:          END IF
  374:          MINWRK = MIN( MINWRK, MAXWRK )
  375:          WORK( 1 ) = MAXWRK
  376:          IWORK( 1 ) = LIWORK
  377:          RWORK( 1 ) = LRWORK
  378: *
  379:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  380:             INFO = -12
  381:          END IF
  382:       END IF
  383: *
  384:       IF( INFO.NE.0 ) THEN
  385:          CALL XERBLA( 'ZGELSD', -INFO )
  386:          RETURN
  387:       ELSE IF( LQUERY ) THEN
  388:          RETURN
  389:       END IF
  390: *
  391: *     Quick return if possible.
  392: *
  393:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  394:          RANK = 0
  395:          RETURN
  396:       END IF
  397: *
  398: *     Get machine parameters.
  399: *
  400:       EPS = DLAMCH( 'P' )
  401:       SFMIN = DLAMCH( 'S' )
  402:       SMLNUM = SFMIN / EPS
  403:       BIGNUM = ONE / SMLNUM
  404:       CALL DLABAD( SMLNUM, BIGNUM )
  405: *
  406: *     Scale A if max entry outside range [SMLNUM,BIGNUM].
  407: *
  408:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  409:       IASCL = 0
  410:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  411: *
  412: *        Scale matrix norm up to SMLNUM
  413: *
  414:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  415:          IASCL = 1
  416:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  417: *
  418: *        Scale matrix norm down to BIGNUM.
  419: *
  420:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  421:          IASCL = 2
  422:       ELSE IF( ANRM.EQ.ZERO ) THEN
  423: *
  424: *        Matrix all zero. Return zero solution.
  425: *
  426:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  427:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
  428:          RANK = 0
  429:          GO TO 10
  430:       END IF
  431: *
  432: *     Scale B if max entry outside range [SMLNUM,BIGNUM].
  433: *
  434:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
  435:       IBSCL = 0
  436:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  437: *
  438: *        Scale matrix norm up to SMLNUM.
  439: *
  440:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  441:          IBSCL = 1
  442:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  443: *
  444: *        Scale matrix norm down to BIGNUM.
  445: *
  446:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  447:          IBSCL = 2
  448:       END IF
  449: *
  450: *     If M < N make sure B(M+1:N,:) = 0
  451: *
  452:       IF( M.LT.N )
  453:      $   CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
  454: *
  455: *     Overdetermined case.
  456: *
  457:       IF( M.GE.N ) THEN
  458: *
  459: *        Path 1 - overdetermined or exactly determined.
  460: *
  461:          MM = M
  462:          IF( M.GE.MNTHR ) THEN
  463: *
  464: *           Path 1a - overdetermined, with many more rows than columns
  465: *
  466:             MM = N
  467:             ITAU = 1
  468:             NWORK = ITAU + N
  469: *
  470: *           Compute A=Q*R.
  471: *           (RWorkspace: need N)
  472: *           (CWorkspace: need N, prefer N*NB)
  473: *
  474:             CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  475:      $                   LWORK-NWORK+1, INFO )
  476: *
  477: *           Multiply B by transpose(Q).
  478: *           (RWorkspace: need N)
  479: *           (CWorkspace: need NRHS, prefer NRHS*NB)
  480: *
  481:             CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
  482:      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  483: *
  484: *           Zero out below R.
  485: *
  486:             IF( N.GT.1 ) THEN
  487:                CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
  488:      $                      LDA )
  489:             END IF
  490:          END IF
  491: *
  492:          ITAUQ = 1
  493:          ITAUP = ITAUQ + N
  494:          NWORK = ITAUP + N
  495:          IE = 1
  496:          NRWORK = IE + N
  497: *
  498: *        Bidiagonalize R in A.
  499: *        (RWorkspace: need N)
  500: *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
  501: *
  502:          CALL ZGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  503:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  504:      $                INFO )
  505: *
  506: *        Multiply B by transpose of left bidiagonalizing vectors of R.
  507: *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
  508: *
  509:          CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
  510:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  511: *
  512: *        Solve the bidiagonal least squares problem.
  513: *
  514:          CALL ZLALSD( 'U', SMLSIZ, N, NRHS, S, RWORK( IE ), B, LDB,
  515:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
  516:      $                IWORK, INFO )
  517:          IF( INFO.NE.0 ) THEN
  518:             GO TO 10
  519:          END IF
  520: *
  521: *        Multiply B by right bidiagonalizing vectors of R.
  522: *
  523:          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
  524:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  525: *
  526:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
  527:      $         MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN
  528: *
  529: *        Path 2a - underdetermined, with many more columns than rows
  530: *        and sufficient workspace for an efficient algorithm.
  531: *
  532:          LDWORK = M
  533:          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
  534:      $       M*LDA+M+M*NRHS ) )LDWORK = LDA
  535:          ITAU = 1
  536:          NWORK = M + 1
  537: *
  538: *        Compute A=L*Q.
  539: *        (CWorkspace: need 2*M, prefer M+M*NB)
  540: *
  541:          CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  542:      $                LWORK-NWORK+1, INFO )
  543:          IL = NWORK
  544: *
  545: *        Copy L to WORK(IL), zeroing out above its diagonal.
  546: *
  547:          CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
  548:          CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
  549:      $                LDWORK )
  550:          ITAUQ = IL + LDWORK*M
  551:          ITAUP = ITAUQ + M
  552:          NWORK = ITAUP + M
  553:          IE = 1
  554:          NRWORK = IE + M
  555: *
  556: *        Bidiagonalize L in WORK(IL).
  557: *        (RWorkspace: need M)
  558: *        (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB)
  559: *
  560:          CALL ZGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
  561:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
  562:      $                LWORK-NWORK+1, INFO )
  563: *
  564: *        Multiply B by transpose of left bidiagonalizing vectors of L.
  565: *        (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
  566: *
  567:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
  568:      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
  569:      $                LWORK-NWORK+1, INFO )
  570: *
  571: *        Solve the bidiagonal least squares problem.
  572: *
  573:          CALL ZLALSD( 'U', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
  574:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
  575:      $                IWORK, INFO )
  576:          IF( INFO.NE.0 ) THEN
  577:             GO TO 10
  578:          END IF
  579: *
  580: *        Multiply B by right bidiagonalizing vectors of L.
  581: *
  582:          CALL ZUNMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
  583:      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
  584:      $                LWORK-NWORK+1, INFO )
  585: *
  586: *        Zero out below first M rows of B.
  587: *
  588:          CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
  589:          NWORK = ITAU + M
  590: *
  591: *        Multiply transpose(Q) by B.
  592: *        (CWorkspace: need NRHS, prefer NRHS*NB)
  593: *
  594:          CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
  595:      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  596: *
  597:       ELSE
  598: *
  599: *        Path 2 - remaining underdetermined cases.
  600: *
  601:          ITAUQ = 1
  602:          ITAUP = ITAUQ + M
  603:          NWORK = ITAUP + M
  604:          IE = 1
  605:          NRWORK = IE + M
  606: *
  607: *        Bidiagonalize A.
  608: *        (RWorkspace: need M)
  609: *        (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
  610: *
  611:          CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
  612:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  613:      $                INFO )
  614: *
  615: *        Multiply B by transpose of left bidiagonalizing vectors.
  616: *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
  617: *
  618:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
  619:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  620: *
  621: *        Solve the bidiagonal least squares problem.
  622: *
  623:          CALL ZLALSD( 'L', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
  624:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
  625:      $                IWORK, INFO )
  626:          IF( INFO.NE.0 ) THEN
  627:             GO TO 10
  628:          END IF
  629: *
  630: *        Multiply B by right bidiagonalizing vectors of A.
  631: *
  632:          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
  633:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  634: *
  635:       END IF
  636: *
  637: *     Undo scaling.
  638: *
  639:       IF( IASCL.EQ.1 ) THEN
  640:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  641:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  642:      $                INFO )
  643:       ELSE IF( IASCL.EQ.2 ) THEN
  644:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  645:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  646:      $                INFO )
  647:       END IF
  648:       IF( IBSCL.EQ.1 ) THEN
  649:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  650:       ELSE IF( IBSCL.EQ.2 ) THEN
  651:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  652:       END IF
  653: *
  654:    10 CONTINUE
  655:       WORK( 1 ) = MAXWRK
  656:       IWORK( 1 ) = LIWORK
  657:       RWORK( 1 ) = LRWORK
  658:       RETURN
  659: *
  660: *     End of ZGELSD
  661: *
  662:       END

CVSweb interface <joel.bertrand@systella.fr>