Annotation of rpl/lapack/lapack/zgelsd.f, revision 1.19

1.9       bertrand    1: *> \brief <b> ZGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZGELSD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelsd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelsd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelsd.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
                     22: *                          WORK, LWORK, RWORK, IWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                     26: *       DOUBLE PRECISION   RCOND
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IWORK( * )
                     30: *       DOUBLE PRECISION   RWORK( * ), S( * )
                     31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     32: *       ..
1.15      bertrand   33: *
1.9       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> ZGELSD computes the minimum-norm solution to a real linear least
                     41: *> squares problem:
                     42: *>     minimize 2-norm(| b - A*x |)
                     43: *> using the singular value decomposition (SVD) of A. A is an M-by-N
                     44: *> matrix which may be rank-deficient.
                     45: *>
                     46: *> Several right hand side vectors b and solution vectors x can be
                     47: *> handled in a single call; they are stored as the columns of the
                     48: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     49: *> matrix X.
                     50: *>
                     51: *> The problem is solved in three steps:
                     52: *> (1) Reduce the coefficient matrix A to bidiagonal form with
1.15      bertrand   53: *>     Householder transformations, reducing the original problem
1.9       bertrand   54: *>     into a "bidiagonal least squares problem" (BLS)
                     55: *> (2) Solve the BLS using a divide and conquer approach.
1.15      bertrand   56: *> (3) Apply back all the Householder transformations to solve
1.9       bertrand   57: *>     the original least squares problem.
                     58: *>
                     59: *> The effective rank of A is determined by treating as zero those
                     60: *> singular values which are less than RCOND times the largest singular
                     61: *> value.
                     62: *>
                     63: *> The divide and conquer algorithm makes very mild assumptions about
                     64: *> floating point arithmetic. It will work on machines with a guard
                     65: *> digit in add/subtract, or on those binary machines without guard
                     66: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     67: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     68: *> without guard digits, but we know of none.
                     69: *> \endverbatim
                     70: *
                     71: *  Arguments:
                     72: *  ==========
                     73: *
                     74: *> \param[in] M
                     75: *> \verbatim
                     76: *>          M is INTEGER
                     77: *>          The number of rows of the matrix A. M >= 0.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] N
                     81: *> \verbatim
                     82: *>          N is INTEGER
                     83: *>          The number of columns of the matrix A. N >= 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] NRHS
                     87: *> \verbatim
                     88: *>          NRHS is INTEGER
                     89: *>          The number of right hand sides, i.e., the number of columns
                     90: *>          of the matrices B and X. NRHS >= 0.
                     91: *> \endverbatim
                     92: *>
1.17      bertrand   93: *> \param[in,out] A
1.9       bertrand   94: *> \verbatim
                     95: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     96: *>          On entry, the M-by-N matrix A.
                     97: *>          On exit, A has been destroyed.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] LDA
                    101: *> \verbatim
                    102: *>          LDA is INTEGER
                    103: *>          The leading dimension of the array A. LDA >= max(1,M).
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in,out] B
                    107: *> \verbatim
                    108: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    109: *>          On entry, the M-by-NRHS right hand side matrix B.
                    110: *>          On exit, B is overwritten by the N-by-NRHS solution matrix X.
                    111: *>          If m >= n and RANK = n, the residual sum-of-squares for
                    112: *>          the solution in the i-th column is given by the sum of
                    113: *>          squares of the modulus of elements n+1:m in that column.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDB
                    117: *> \verbatim
                    118: *>          LDB is INTEGER
                    119: *>          The leading dimension of the array B.  LDB >= max(1,M,N).
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[out] S
                    123: *> \verbatim
                    124: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
                    125: *>          The singular values of A in decreasing order.
                    126: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] RCOND
                    130: *> \verbatim
                    131: *>          RCOND is DOUBLE PRECISION
                    132: *>          RCOND is used to determine the effective rank of A.
                    133: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
                    134: *>          If RCOND < 0, machine precision is used instead.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[out] RANK
                    138: *> \verbatim
                    139: *>          RANK is INTEGER
                    140: *>          The effective rank of A, i.e., the number of singular values
                    141: *>          which are greater than RCOND*S(1).
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[out] WORK
                    145: *> \verbatim
                    146: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    147: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[in] LWORK
                    151: *> \verbatim
                    152: *>          LWORK is INTEGER
                    153: *>          The dimension of the array WORK. LWORK must be at least 1.
                    154: *>          The exact minimum amount of workspace needed depends on M,
                    155: *>          N and NRHS. As long as LWORK is at least
                    156: *>              2*N + N*NRHS
                    157: *>          if M is greater than or equal to N or
                    158: *>              2*M + M*NRHS
                    159: *>          if M is less than N, the code will execute correctly.
                    160: *>          For good performance, LWORK should generally be larger.
                    161: *>
                    162: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    163: *>          only calculates the optimal size of the array WORK and the
                    164: *>          minimum sizes of the arrays RWORK and IWORK, and returns
                    165: *>          these values as the first entries of the WORK, RWORK and
                    166: *>          IWORK arrays, and no error message related to LWORK is issued
                    167: *>          by XERBLA.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[out] RWORK
                    171: *> \verbatim
                    172: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
                    173: *>          LRWORK >=
                    174: *>             10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
                    175: *>             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
                    176: *>          if M is greater than or equal to N or
                    177: *>             10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
                    178: *>             MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
                    179: *>          if M is less than N, the code will execute correctly.
                    180: *>          SMLSIZ is returned by ILAENV and is equal to the maximum
                    181: *>          size of the subproblems at the bottom of the computation
                    182: *>          tree (usually about 25), and
                    183: *>             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
                    184: *>          On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK.
                    185: *> \endverbatim
                    186: *>
                    187: *> \param[out] IWORK
                    188: *> \verbatim
                    189: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    190: *>          LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),
                    191: *>          where MINMN = MIN( M,N ).
                    192: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
                    193: *> \endverbatim
                    194: *>
                    195: *> \param[out] INFO
                    196: *> \verbatim
                    197: *>          INFO is INTEGER
                    198: *>          = 0: successful exit
                    199: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
                    200: *>          > 0:  the algorithm for computing the SVD failed to converge;
                    201: *>                if INFO = i, i off-diagonal elements of an intermediate
                    202: *>                bidiagonal form did not converge to zero.
                    203: *> \endverbatim
                    204: *
                    205: *  Authors:
                    206: *  ========
                    207: *
1.15      bertrand  208: *> \author Univ. of Tennessee
                    209: *> \author Univ. of California Berkeley
                    210: *> \author Univ. of Colorado Denver
                    211: *> \author NAG Ltd.
1.9       bertrand  212: *
                    213: *> \ingroup complex16GEsolve
                    214: *
                    215: *> \par Contributors:
                    216: *  ==================
                    217: *>
                    218: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
                    219: *>       California at Berkeley, USA \n
                    220: *>     Osni Marques, LBNL/NERSC, USA \n
                    221: *
                    222: *  =====================================================================
1.1       bertrand  223:       SUBROUTINE ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
                    224:      $                   WORK, LWORK, RWORK, IWORK, INFO )
                    225: *
1.19    ! bertrand  226: *  -- LAPACK driver routine --
1.1       bertrand  227: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    228: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    229: *
                    230: *     .. Scalar Arguments ..
                    231:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                    232:       DOUBLE PRECISION   RCOND
                    233: *     ..
                    234: *     .. Array Arguments ..
                    235:       INTEGER            IWORK( * )
                    236:       DOUBLE PRECISION   RWORK( * ), S( * )
                    237:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    238: *     ..
                    239: *
                    240: *  =====================================================================
                    241: *
                    242: *     .. Parameters ..
                    243:       DOUBLE PRECISION   ZERO, ONE, TWO
                    244:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
                    245:       COMPLEX*16         CZERO
                    246:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
                    247: *     ..
                    248: *     .. Local Scalars ..
                    249:       LOGICAL            LQUERY
                    250:       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
                    251:      $                   LDWORK, LIWORK, LRWORK, MAXMN, MAXWRK, MINMN,
                    252:      $                   MINWRK, MM, MNTHR, NLVL, NRWORK, NWORK, SMLSIZ
                    253:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
                    254: *     ..
                    255: *     .. External Subroutines ..
                    256:       EXTERNAL           DLABAD, DLASCL, DLASET, XERBLA, ZGEBRD, ZGELQF,
                    257:      $                   ZGEQRF, ZLACPY, ZLALSD, ZLASCL, ZLASET, ZUNMBR,
                    258:      $                   ZUNMLQ, ZUNMQR
                    259: *     ..
                    260: *     .. External Functions ..
                    261:       INTEGER            ILAENV
                    262:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    263:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
                    264: *     ..
                    265: *     .. Intrinsic Functions ..
                    266:       INTRINSIC          INT, LOG, MAX, MIN, DBLE
                    267: *     ..
                    268: *     .. Executable Statements ..
                    269: *
                    270: *     Test the input arguments.
                    271: *
                    272:       INFO = 0
                    273:       MINMN = MIN( M, N )
                    274:       MAXMN = MAX( M, N )
                    275:       LQUERY = ( LWORK.EQ.-1 )
                    276:       IF( M.LT.0 ) THEN
                    277:          INFO = -1
                    278:       ELSE IF( N.LT.0 ) THEN
                    279:          INFO = -2
                    280:       ELSE IF( NRHS.LT.0 ) THEN
                    281:          INFO = -3
                    282:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    283:          INFO = -5
                    284:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
                    285:          INFO = -7
                    286:       END IF
                    287: *
                    288: *     Compute workspace.
                    289: *     (Note: Comments in the code beginning "Workspace:" describe the
                    290: *     minimal amount of workspace needed at that point in the code,
                    291: *     as well as the preferred amount for good performance.
                    292: *     NB refers to the optimal block size for the immediately
                    293: *     following subroutine, as returned by ILAENV.)
                    294: *
                    295:       IF( INFO.EQ.0 ) THEN
                    296:          MINWRK = 1
                    297:          MAXWRK = 1
                    298:          LIWORK = 1
                    299:          LRWORK = 1
                    300:          IF( MINMN.GT.0 ) THEN
                    301:             SMLSIZ = ILAENV( 9, 'ZGELSD', ' ', 0, 0, 0, 0 )
                    302:             MNTHR = ILAENV( 6, 'ZGELSD', ' ', M, N, NRHS, -1 )
                    303:             NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ + 1 ) ) /
                    304:      $                  LOG( TWO ) ) + 1, 0 )
                    305:             LIWORK = 3*MINMN*NLVL + 11*MINMN
                    306:             MM = M
                    307:             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
                    308: *
                    309: *              Path 1a - overdetermined, with many more rows than
                    310: *                        columns.
                    311: *
                    312:                MM = N
                    313:                MAXWRK = MAX( MAXWRK, N*ILAENV( 1, 'ZGEQRF', ' ', M, N,
                    314:      $                       -1, -1 ) )
                    315:                MAXWRK = MAX( MAXWRK, NRHS*ILAENV( 1, 'ZUNMQR', 'LC', M,
                    316:      $                       NRHS, N, -1 ) )
                    317:             END IF
                    318:             IF( M.GE.N ) THEN
                    319: *
                    320: *              Path 1 - overdetermined or exactly determined.
                    321: *
                    322:                LRWORK = 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
1.5       bertrand  323:      $                  MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
1.1       bertrand  324:                MAXWRK = MAX( MAXWRK, 2*N + ( MM + N )*ILAENV( 1,
                    325:      $                       'ZGEBRD', ' ', MM, N, -1, -1 ) )
                    326:                MAXWRK = MAX( MAXWRK, 2*N + NRHS*ILAENV( 1, 'ZUNMBR',
                    327:      $                       'QLC', MM, NRHS, N, -1 ) )
                    328:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
                    329:      $                       'ZUNMBR', 'PLN', N, NRHS, N, -1 ) )
                    330:                MAXWRK = MAX( MAXWRK, 2*N + N*NRHS )
                    331:                MINWRK = MAX( 2*N + MM, 2*N + N*NRHS )
                    332:             END IF
                    333:             IF( N.GT.M ) THEN
                    334:                LRWORK = 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
1.5       bertrand  335:      $                  MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS )
1.1       bertrand  336:                IF( N.GE.MNTHR ) THEN
                    337: *
                    338: *                 Path 2a - underdetermined, with many more columns
                    339: *                           than rows.
                    340: *
                    341:                   MAXWRK = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1,
                    342:      $                     -1 )
                    343:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + 2*M*ILAENV( 1,
                    344:      $                          'ZGEBRD', ' ', M, M, -1, -1 ) )
                    345:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + NRHS*ILAENV( 1,
                    346:      $                          'ZUNMBR', 'QLC', M, NRHS, M, -1 ) )
                    347:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + ( M - 1 )*ILAENV( 1,
                    348:      $                          'ZUNMLQ', 'LC', N, NRHS, M, -1 ) )
                    349:                   IF( NRHS.GT.1 ) THEN
                    350:                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
                    351:                   ELSE
                    352:                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
                    353:                   END IF
                    354:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + M*NRHS )
                    355: !     XXX: Ensure the Path 2a case below is triggered.  The workspace
                    356: !     calculation should use queries for all routines eventually.
                    357:                   MAXWRK = MAX( MAXWRK,
                    358:      $                 4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
                    359:                ELSE
                    360: *
                    361: *                 Path 2 - underdetermined.
                    362: *
                    363:                   MAXWRK = 2*M + ( N + M )*ILAENV( 1, 'ZGEBRD', ' ', M,
                    364:      $                     N, -1, -1 )
                    365:                   MAXWRK = MAX( MAXWRK, 2*M + NRHS*ILAENV( 1, 'ZUNMBR',
                    366:      $                          'QLC', M, NRHS, M, -1 ) )
                    367:                   MAXWRK = MAX( MAXWRK, 2*M + M*ILAENV( 1, 'ZUNMBR',
                    368:      $                          'PLN', N, NRHS, M, -1 ) )
                    369:                   MAXWRK = MAX( MAXWRK, 2*M + M*NRHS )
                    370:                END IF
                    371:                MINWRK = MAX( 2*M + N, 2*M + M*NRHS )
                    372:             END IF
                    373:          END IF
                    374:          MINWRK = MIN( MINWRK, MAXWRK )
                    375:          WORK( 1 ) = MAXWRK
                    376:          IWORK( 1 ) = LIWORK
                    377:          RWORK( 1 ) = LRWORK
                    378: *
                    379:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    380:             INFO = -12
                    381:          END IF
                    382:       END IF
                    383: *
                    384:       IF( INFO.NE.0 ) THEN
                    385:          CALL XERBLA( 'ZGELSD', -INFO )
                    386:          RETURN
                    387:       ELSE IF( LQUERY ) THEN
                    388:          RETURN
                    389:       END IF
                    390: *
                    391: *     Quick return if possible.
                    392: *
                    393:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
                    394:          RANK = 0
                    395:          RETURN
                    396:       END IF
                    397: *
                    398: *     Get machine parameters.
                    399: *
                    400:       EPS = DLAMCH( 'P' )
                    401:       SFMIN = DLAMCH( 'S' )
                    402:       SMLNUM = SFMIN / EPS
                    403:       BIGNUM = ONE / SMLNUM
                    404:       CALL DLABAD( SMLNUM, BIGNUM )
                    405: *
                    406: *     Scale A if max entry outside range [SMLNUM,BIGNUM].
                    407: *
                    408:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
                    409:       IASCL = 0
                    410:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    411: *
                    412: *        Scale matrix norm up to SMLNUM
                    413: *
                    414:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    415:          IASCL = 1
                    416:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    417: *
                    418: *        Scale matrix norm down to BIGNUM.
                    419: *
                    420:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    421:          IASCL = 2
                    422:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    423: *
                    424: *        Matrix all zero. Return zero solution.
                    425: *
                    426:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    427:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
                    428:          RANK = 0
                    429:          GO TO 10
                    430:       END IF
                    431: *
                    432: *     Scale B if max entry outside range [SMLNUM,BIGNUM].
                    433: *
                    434:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
                    435:       IBSCL = 0
                    436:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    437: *
                    438: *        Scale matrix norm up to SMLNUM.
                    439: *
                    440:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    441:          IBSCL = 1
                    442:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    443: *
                    444: *        Scale matrix norm down to BIGNUM.
                    445: *
                    446:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    447:          IBSCL = 2
                    448:       END IF
                    449: *
                    450: *     If M < N make sure B(M+1:N,:) = 0
                    451: *
                    452:       IF( M.LT.N )
                    453:      $   CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
                    454: *
                    455: *     Overdetermined case.
                    456: *
                    457:       IF( M.GE.N ) THEN
                    458: *
                    459: *        Path 1 - overdetermined or exactly determined.
                    460: *
                    461:          MM = M
                    462:          IF( M.GE.MNTHR ) THEN
                    463: *
                    464: *           Path 1a - overdetermined, with many more rows than columns
                    465: *
                    466:             MM = N
                    467:             ITAU = 1
                    468:             NWORK = ITAU + N
                    469: *
                    470: *           Compute A=Q*R.
                    471: *           (RWorkspace: need N)
                    472: *           (CWorkspace: need N, prefer N*NB)
                    473: *
                    474:             CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
                    475:      $                   LWORK-NWORK+1, INFO )
                    476: *
                    477: *           Multiply B by transpose(Q).
                    478: *           (RWorkspace: need N)
                    479: *           (CWorkspace: need NRHS, prefer NRHS*NB)
                    480: *
                    481:             CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
                    482:      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    483: *
                    484: *           Zero out below R.
                    485: *
                    486:             IF( N.GT.1 ) THEN
                    487:                CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
                    488:      $                      LDA )
                    489:             END IF
                    490:          END IF
                    491: *
                    492:          ITAUQ = 1
                    493:          ITAUP = ITAUQ + N
                    494:          NWORK = ITAUP + N
                    495:          IE = 1
                    496:          NRWORK = IE + N
                    497: *
                    498: *        Bidiagonalize R in A.
                    499: *        (RWorkspace: need N)
                    500: *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
                    501: *
                    502:          CALL ZGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
                    503:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
                    504:      $                INFO )
                    505: *
                    506: *        Multiply B by transpose of left bidiagonalizing vectors of R.
                    507: *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
                    508: *
                    509:          CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
                    510:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    511: *
                    512: *        Solve the bidiagonal least squares problem.
                    513: *
                    514:          CALL ZLALSD( 'U', SMLSIZ, N, NRHS, S, RWORK( IE ), B, LDB,
                    515:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
                    516:      $                IWORK, INFO )
                    517:          IF( INFO.NE.0 ) THEN
                    518:             GO TO 10
                    519:          END IF
                    520: *
                    521: *        Multiply B by right bidiagonalizing vectors of R.
                    522: *
                    523:          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
                    524:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    525: *
                    526:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
                    527:      $         MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN
                    528: *
                    529: *        Path 2a - underdetermined, with many more columns than rows
                    530: *        and sufficient workspace for an efficient algorithm.
                    531: *
                    532:          LDWORK = M
                    533:          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
                    534:      $       M*LDA+M+M*NRHS ) )LDWORK = LDA
                    535:          ITAU = 1
                    536:          NWORK = M + 1
                    537: *
                    538: *        Compute A=L*Q.
                    539: *        (CWorkspace: need 2*M, prefer M+M*NB)
                    540: *
                    541:          CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
                    542:      $                LWORK-NWORK+1, INFO )
                    543:          IL = NWORK
                    544: *
                    545: *        Copy L to WORK(IL), zeroing out above its diagonal.
                    546: *
                    547:          CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
                    548:          CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
                    549:      $                LDWORK )
                    550:          ITAUQ = IL + LDWORK*M
                    551:          ITAUP = ITAUQ + M
                    552:          NWORK = ITAUP + M
                    553:          IE = 1
                    554:          NRWORK = IE + M
                    555: *
                    556: *        Bidiagonalize L in WORK(IL).
                    557: *        (RWorkspace: need M)
                    558: *        (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB)
                    559: *
                    560:          CALL ZGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
                    561:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
                    562:      $                LWORK-NWORK+1, INFO )
                    563: *
                    564: *        Multiply B by transpose of left bidiagonalizing vectors of L.
                    565: *        (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
                    566: *
                    567:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
                    568:      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
                    569:      $                LWORK-NWORK+1, INFO )
                    570: *
                    571: *        Solve the bidiagonal least squares problem.
                    572: *
                    573:          CALL ZLALSD( 'U', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
                    574:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
                    575:      $                IWORK, INFO )
                    576:          IF( INFO.NE.0 ) THEN
                    577:             GO TO 10
                    578:          END IF
                    579: *
                    580: *        Multiply B by right bidiagonalizing vectors of L.
                    581: *
                    582:          CALL ZUNMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
                    583:      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
                    584:      $                LWORK-NWORK+1, INFO )
                    585: *
                    586: *        Zero out below first M rows of B.
                    587: *
                    588:          CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
                    589:          NWORK = ITAU + M
                    590: *
                    591: *        Multiply transpose(Q) by B.
                    592: *        (CWorkspace: need NRHS, prefer NRHS*NB)
                    593: *
                    594:          CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
                    595:      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    596: *
                    597:       ELSE
                    598: *
                    599: *        Path 2 - remaining underdetermined cases.
                    600: *
                    601:          ITAUQ = 1
                    602:          ITAUP = ITAUQ + M
                    603:          NWORK = ITAUP + M
                    604:          IE = 1
                    605:          NRWORK = IE + M
                    606: *
                    607: *        Bidiagonalize A.
                    608: *        (RWorkspace: need M)
                    609: *        (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
                    610: *
                    611:          CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
                    612:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
                    613:      $                INFO )
                    614: *
                    615: *        Multiply B by transpose of left bidiagonalizing vectors.
                    616: *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
                    617: *
                    618:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
                    619:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    620: *
                    621: *        Solve the bidiagonal least squares problem.
                    622: *
                    623:          CALL ZLALSD( 'L', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
                    624:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
                    625:      $                IWORK, INFO )
                    626:          IF( INFO.NE.0 ) THEN
                    627:             GO TO 10
                    628:          END IF
                    629: *
                    630: *        Multiply B by right bidiagonalizing vectors of A.
                    631: *
                    632:          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
                    633:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    634: *
                    635:       END IF
                    636: *
                    637: *     Undo scaling.
                    638: *
                    639:       IF( IASCL.EQ.1 ) THEN
                    640:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    641:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
                    642:      $                INFO )
                    643:       ELSE IF( IASCL.EQ.2 ) THEN
                    644:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    645:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
                    646:      $                INFO )
                    647:       END IF
                    648:       IF( IBSCL.EQ.1 ) THEN
                    649:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    650:       ELSE IF( IBSCL.EQ.2 ) THEN
                    651:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    652:       END IF
                    653: *
                    654:    10 CONTINUE
                    655:       WORK( 1 ) = MAXWRK
                    656:       IWORK( 1 ) = LIWORK
                    657:       RWORK( 1 ) = LRWORK
                    658:       RETURN
                    659: *
                    660: *     End of ZGELSD
                    661: *
                    662:       END

CVSweb interface <joel.bertrand@systella.fr>