File:  [local] / rpl / lapack / lapack / zgels.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:45 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief <b> ZGELS solves overdetermined or underdetermined systems for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGELS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgels.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgels.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgels.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
   22: *                         INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          TRANS
   26: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZGELS solves overdetermined or underdetermined complex linear systems
   39: *> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
   40: *> or LQ factorization of A.  It is assumed that A has full rank.
   41: *>
   42: *> The following options are provided:
   43: *>
   44: *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
   45: *>    an overdetermined system, i.e., solve the least squares problem
   46: *>                 minimize || B - A*X ||.
   47: *>
   48: *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
   49: *>    an underdetermined system A * X = B.
   50: *>
   51: *> 3. If TRANS = 'C' and m >= n:  find the minimum norm solution of
   52: *>    an undetermined system A**H * X = B.
   53: *>
   54: *> 4. If TRANS = 'C' and m < n:  find the least squares solution of
   55: *>    an overdetermined system, i.e., solve the least squares problem
   56: *>                 minimize || B - A**H * X ||.
   57: *>
   58: *> Several right hand side vectors b and solution vectors x can be
   59: *> handled in a single call; they are stored as the columns of the
   60: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   61: *> matrix X.
   62: *> \endverbatim
   63: *
   64: *  Arguments:
   65: *  ==========
   66: *
   67: *> \param[in] TRANS
   68: *> \verbatim
   69: *>          TRANS is CHARACTER*1
   70: *>          = 'N': the linear system involves A;
   71: *>          = 'C': the linear system involves A**H.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] M
   75: *> \verbatim
   76: *>          M is INTEGER
   77: *>          The number of rows of the matrix A.  M >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>          The number of columns of the matrix A.  N >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] NRHS
   87: *> \verbatim
   88: *>          NRHS is INTEGER
   89: *>          The number of right hand sides, i.e., the number of
   90: *>          columns of the matrices B and X. NRHS >= 0.
   91: *> \endverbatim
   92: *>
   93: *> \param[in,out] A
   94: *> \verbatim
   95: *>          A is COMPLEX*16 array, dimension (LDA,N)
   96: *>          On entry, the M-by-N matrix A.
   97: *>            if M >= N, A is overwritten by details of its QR
   98: *>                       factorization as returned by ZGEQRF;
   99: *>            if M <  N, A is overwritten by details of its LQ
  100: *>                       factorization as returned by ZGELQF.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>          The leading dimension of the array A.  LDA >= max(1,M).
  107: *> \endverbatim
  108: *>
  109: *> \param[in,out] B
  110: *> \verbatim
  111: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  112: *>          On entry, the matrix B of right hand side vectors, stored
  113: *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  114: *>          if TRANS = 'C'.
  115: *>          On exit, if INFO = 0, B is overwritten by the solution
  116: *>          vectors, stored columnwise:
  117: *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  118: *>          squares solution vectors; the residual sum of squares for the
  119: *>          solution in each column is given by the sum of squares of the
  120: *>          modulus of elements N+1 to M in that column;
  121: *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
  122: *>          minimum norm solution vectors;
  123: *>          if TRANS = 'C' and m >= n, rows 1 to M of B contain the
  124: *>          minimum norm solution vectors;
  125: *>          if TRANS = 'C' and m < n, rows 1 to M of B contain the
  126: *>          least squares solution vectors; the residual sum of squares
  127: *>          for the solution in each column is given by the sum of
  128: *>          squares of the modulus of elements M+1 to N in that column.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDB
  132: *> \verbatim
  133: *>          LDB is INTEGER
  134: *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
  135: *> \endverbatim
  136: *>
  137: *> \param[out] WORK
  138: *> \verbatim
  139: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  140: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  141: *> \endverbatim
  142: *>
  143: *> \param[in] LWORK
  144: *> \verbatim
  145: *>          LWORK is INTEGER
  146: *>          The dimension of the array WORK.
  147: *>          LWORK >= max( 1, MN + max( MN, NRHS ) ).
  148: *>          For optimal performance,
  149: *>          LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
  150: *>          where MN = min(M,N) and NB is the optimum block size.
  151: *>
  152: *>          If LWORK = -1, then a workspace query is assumed; the routine
  153: *>          only calculates the optimal size of the WORK array, returns
  154: *>          this value as the first entry of the WORK array, and no error
  155: *>          message related to LWORK is issued by XERBLA.
  156: *> \endverbatim
  157: *>
  158: *> \param[out] INFO
  159: *> \verbatim
  160: *>          INFO is INTEGER
  161: *>          = 0:  successful exit
  162: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  163: *>          > 0:  if INFO =  i, the i-th diagonal element of the
  164: *>                triangular factor of A is zero, so that A does not have
  165: *>                full rank; the least squares solution could not be
  166: *>                computed.
  167: *> \endverbatim
  168: *
  169: *  Authors:
  170: *  ========
  171: *
  172: *> \author Univ. of Tennessee 
  173: *> \author Univ. of California Berkeley 
  174: *> \author Univ. of Colorado Denver 
  175: *> \author NAG Ltd. 
  176: *
  177: *> \date November 2011
  178: *
  179: *> \ingroup complex16GEsolve
  180: *
  181: *  =====================================================================
  182:       SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
  183:      $                  INFO )
  184: *
  185: *  -- LAPACK driver routine (version 3.4.0) --
  186: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  187: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  188: *     November 2011
  189: *
  190: *     .. Scalar Arguments ..
  191:       CHARACTER          TRANS
  192:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
  193: *     ..
  194: *     .. Array Arguments ..
  195:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
  196: *     ..
  197: *
  198: *  =====================================================================
  199: *
  200: *     .. Parameters ..
  201:       DOUBLE PRECISION   ZERO, ONE
  202:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  203:       COMPLEX*16         CZERO
  204:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  205: *     ..
  206: *     .. Local Scalars ..
  207:       LOGICAL            LQUERY, TPSD
  208:       INTEGER            BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
  209:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM
  210: *     ..
  211: *     .. Local Arrays ..
  212:       DOUBLE PRECISION   RWORK( 1 )
  213: *     ..
  214: *     .. External Functions ..
  215:       LOGICAL            LSAME
  216:       INTEGER            ILAENV
  217:       DOUBLE PRECISION   DLAMCH, ZLANGE
  218:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
  219: *     ..
  220: *     .. External Subroutines ..
  221:       EXTERNAL           DLABAD, XERBLA, ZGELQF, ZGEQRF, ZLASCL, ZLASET,
  222:      $                   ZTRTRS, ZUNMLQ, ZUNMQR
  223: *     ..
  224: *     .. Intrinsic Functions ..
  225:       INTRINSIC          DBLE, MAX, MIN
  226: *     ..
  227: *     .. Executable Statements ..
  228: *
  229: *     Test the input arguments.
  230: *
  231:       INFO = 0
  232:       MN = MIN( M, N )
  233:       LQUERY = ( LWORK.EQ.-1 )
  234:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
  235:          INFO = -1
  236:       ELSE IF( M.LT.0 ) THEN
  237:          INFO = -2
  238:       ELSE IF( N.LT.0 ) THEN
  239:          INFO = -3
  240:       ELSE IF( NRHS.LT.0 ) THEN
  241:          INFO = -4
  242:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  243:          INFO = -6
  244:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  245:          INFO = -8
  246:       ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
  247:      $          THEN
  248:          INFO = -10
  249:       END IF
  250: *
  251: *     Figure out optimal block size
  252: *
  253:       IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
  254: *
  255:          TPSD = .TRUE.
  256:          IF( LSAME( TRANS, 'N' ) )
  257:      $      TPSD = .FALSE.
  258: *
  259:          IF( M.GE.N ) THEN
  260:             NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
  261:             IF( TPSD ) THEN
  262:                NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LN', M, NRHS, N,
  263:      $              -1 ) )
  264:             ELSE
  265:                NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LC', M, NRHS, N,
  266:      $              -1 ) )
  267:             END IF
  268:          ELSE
  269:             NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
  270:             IF( TPSD ) THEN
  271:                NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LC', N, NRHS, M,
  272:      $              -1 ) )
  273:             ELSE
  274:                NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LN', N, NRHS, M,
  275:      $              -1 ) )
  276:             END IF
  277:          END IF
  278: *
  279:          WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB )
  280:          WORK( 1 ) = DBLE( WSIZE )
  281: *
  282:       END IF
  283: *
  284:       IF( INFO.NE.0 ) THEN
  285:          CALL XERBLA( 'ZGELS ', -INFO )
  286:          RETURN
  287:       ELSE IF( LQUERY ) THEN
  288:          RETURN
  289:       END IF
  290: *
  291: *     Quick return if possible
  292: *
  293:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  294:          CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  295:          RETURN
  296:       END IF
  297: *
  298: *     Get machine parameters
  299: *
  300:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  301:       BIGNUM = ONE / SMLNUM
  302:       CALL DLABAD( SMLNUM, BIGNUM )
  303: *
  304: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
  305: *
  306:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  307:       IASCL = 0
  308:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  309: *
  310: *        Scale matrix norm up to SMLNUM
  311: *
  312:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  313:          IASCL = 1
  314:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  315: *
  316: *        Scale matrix norm down to BIGNUM
  317: *
  318:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  319:          IASCL = 2
  320:       ELSE IF( ANRM.EQ.ZERO ) THEN
  321: *
  322: *        Matrix all zero. Return zero solution.
  323: *
  324:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  325:          GO TO 50
  326:       END IF
  327: *
  328:       BROW = M
  329:       IF( TPSD )
  330:      $   BROW = N
  331:       BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
  332:       IBSCL = 0
  333:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  334: *
  335: *        Scale matrix norm up to SMLNUM
  336: *
  337:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  338:      $                INFO )
  339:          IBSCL = 1
  340:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  341: *
  342: *        Scale matrix norm down to BIGNUM
  343: *
  344:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  345:      $                INFO )
  346:          IBSCL = 2
  347:       END IF
  348: *
  349:       IF( M.GE.N ) THEN
  350: *
  351: *        compute QR factorization of A
  352: *
  353:          CALL ZGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
  354:      $                INFO )
  355: *
  356: *        workspace at least N, optimally N*NB
  357: *
  358:          IF( .NOT.TPSD ) THEN
  359: *
  360: *           Least-Squares Problem min || A * X - B ||
  361: *
  362: *           B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
  363: *
  364:             CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, N, A,
  365:      $                   LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  366:      $                   INFO )
  367: *
  368: *           workspace at least NRHS, optimally NRHS*NB
  369: *
  370: *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  371: *
  372:             CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
  373:      $                   A, LDA, B, LDB, INFO )
  374: *
  375:             IF( INFO.GT.0 ) THEN
  376:                RETURN
  377:             END IF
  378: *
  379:             SCLLEN = N
  380: *
  381:          ELSE
  382: *
  383: *           Overdetermined system of equations A**H * X = B
  384: *
  385: *           B(1:N,1:NRHS) := inv(R**H) * B(1:N,1:NRHS)
  386: *
  387:             CALL ZTRTRS( 'Upper', 'Conjugate transpose','Non-unit',
  388:      $                   N, NRHS, A, LDA, B, LDB, INFO )
  389: *
  390:             IF( INFO.GT.0 ) THEN
  391:                RETURN
  392:             END IF
  393: *
  394: *           B(N+1:M,1:NRHS) = ZERO
  395: *
  396:             DO 20 J = 1, NRHS
  397:                DO 10 I = N + 1, M
  398:                   B( I, J ) = CZERO
  399:    10          CONTINUE
  400:    20       CONTINUE
  401: *
  402: *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  403: *
  404:             CALL ZUNMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA,
  405:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  406:      $                   INFO )
  407: *
  408: *           workspace at least NRHS, optimally NRHS*NB
  409: *
  410:             SCLLEN = M
  411: *
  412:          END IF
  413: *
  414:       ELSE
  415: *
  416: *        Compute LQ factorization of A
  417: *
  418:          CALL ZGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
  419:      $                INFO )
  420: *
  421: *        workspace at least M, optimally M*NB.
  422: *
  423:          IF( .NOT.TPSD ) THEN
  424: *
  425: *           underdetermined system of equations A * X = B
  426: *
  427: *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  428: *
  429:             CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
  430:      $                   A, LDA, B, LDB, INFO )
  431: *
  432:             IF( INFO.GT.0 ) THEN
  433:                RETURN
  434:             END IF
  435: *
  436: *           B(M+1:N,1:NRHS) = 0
  437: *
  438:             DO 40 J = 1, NRHS
  439:                DO 30 I = M + 1, N
  440:                   B( I, J ) = CZERO
  441:    30          CONTINUE
  442:    40       CONTINUE
  443: *
  444: *           B(1:N,1:NRHS) := Q(1:N,:)**H * B(1:M,1:NRHS)
  445: *
  446:             CALL ZUNMLQ( 'Left', 'Conjugate transpose', N, NRHS, M, A,
  447:      $                   LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  448:      $                   INFO )
  449: *
  450: *           workspace at least NRHS, optimally NRHS*NB
  451: *
  452:             SCLLEN = N
  453: *
  454:          ELSE
  455: *
  456: *           overdetermined system min || A**H * X - B ||
  457: *
  458: *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  459: *
  460:             CALL ZUNMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA,
  461:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  462:      $                   INFO )
  463: *
  464: *           workspace at least NRHS, optimally NRHS*NB
  465: *
  466: *           B(1:M,1:NRHS) := inv(L**H) * B(1:M,1:NRHS)
  467: *
  468:             CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
  469:      $                   M, NRHS, A, LDA, B, LDB, INFO )
  470: *
  471:             IF( INFO.GT.0 ) THEN
  472:                RETURN
  473:             END IF
  474: *
  475:             SCLLEN = M
  476: *
  477:          END IF
  478: *
  479:       END IF
  480: *
  481: *     Undo scaling
  482: *
  483:       IF( IASCL.EQ.1 ) THEN
  484:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  485:      $                INFO )
  486:       ELSE IF( IASCL.EQ.2 ) THEN
  487:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  488:      $                INFO )
  489:       END IF
  490:       IF( IBSCL.EQ.1 ) THEN
  491:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  492:      $                INFO )
  493:       ELSE IF( IBSCL.EQ.2 ) THEN
  494:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  495:      $                INFO )
  496:       END IF
  497: *
  498:    50 CONTINUE
  499:       WORK( 1 ) = DBLE( WSIZE )
  500: *
  501:       RETURN
  502: *
  503: *     End of ZGELS
  504: *
  505:       END

CVSweb interface <joel.bertrand@systella.fr>