Annotation of rpl/lapack/lapack/zgels.f, revision 1.10

1.9       bertrand    1: *> \brief <b> ZGELS solves overdetermined or underdetermined systems for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZGELS + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgels.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgels.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgels.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
                     22: *                         INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          TRANS
                     26: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     30: *       ..
                     31: *  
                     32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZGELS solves overdetermined or underdetermined complex linear systems
                     39: *> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
                     40: *> or LQ factorization of A.  It is assumed that A has full rank.
                     41: *>
                     42: *> The following options are provided:
                     43: *>
                     44: *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
                     45: *>    an overdetermined system, i.e., solve the least squares problem
                     46: *>                 minimize || B - A*X ||.
                     47: *>
                     48: *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
                     49: *>    an underdetermined system A * X = B.
                     50: *>
                     51: *> 3. If TRANS = 'C' and m >= n:  find the minimum norm solution of
                     52: *>    an undetermined system A**H * X = B.
                     53: *>
                     54: *> 4. If TRANS = 'C' and m < n:  find the least squares solution of
                     55: *>    an overdetermined system, i.e., solve the least squares problem
                     56: *>                 minimize || B - A**H * X ||.
                     57: *>
                     58: *> Several right hand side vectors b and solution vectors x can be
                     59: *> handled in a single call; they are stored as the columns of the
                     60: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     61: *> matrix X.
                     62: *> \endverbatim
                     63: *
                     64: *  Arguments:
                     65: *  ==========
                     66: *
                     67: *> \param[in] TRANS
                     68: *> \verbatim
                     69: *>          TRANS is CHARACTER*1
                     70: *>          = 'N': the linear system involves A;
                     71: *>          = 'C': the linear system involves A**H.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] M
                     75: *> \verbatim
                     76: *>          M is INTEGER
                     77: *>          The number of rows of the matrix A.  M >= 0.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] N
                     81: *> \verbatim
                     82: *>          N is INTEGER
                     83: *>          The number of columns of the matrix A.  N >= 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] NRHS
                     87: *> \verbatim
                     88: *>          NRHS is INTEGER
                     89: *>          The number of right hand sides, i.e., the number of
                     90: *>          columns of the matrices B and X. NRHS >= 0.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in,out] A
                     94: *> \verbatim
                     95: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     96: *>          On entry, the M-by-N matrix A.
                     97: *>            if M >= N, A is overwritten by details of its QR
                     98: *>                       factorization as returned by ZGEQRF;
                     99: *>            if M <  N, A is overwritten by details of its LQ
                    100: *>                       factorization as returned by ZGELQF.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDA
                    104: *> \verbatim
                    105: *>          LDA is INTEGER
                    106: *>          The leading dimension of the array A.  LDA >= max(1,M).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in,out] B
                    110: *> \verbatim
                    111: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    112: *>          On entry, the matrix B of right hand side vectors, stored
                    113: *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
                    114: *>          if TRANS = 'C'.
                    115: *>          On exit, if INFO = 0, B is overwritten by the solution
                    116: *>          vectors, stored columnwise:
                    117: *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
                    118: *>          squares solution vectors; the residual sum of squares for the
                    119: *>          solution in each column is given by the sum of squares of the
                    120: *>          modulus of elements N+1 to M in that column;
                    121: *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
                    122: *>          minimum norm solution vectors;
                    123: *>          if TRANS = 'C' and m >= n, rows 1 to M of B contain the
                    124: *>          minimum norm solution vectors;
                    125: *>          if TRANS = 'C' and m < n, rows 1 to M of B contain the
                    126: *>          least squares solution vectors; the residual sum of squares
                    127: *>          for the solution in each column is given by the sum of
                    128: *>          squares of the modulus of elements M+1 to N in that column.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in] LDB
                    132: *> \verbatim
                    133: *>          LDB is INTEGER
                    134: *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[out] WORK
                    138: *> \verbatim
                    139: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    140: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[in] LWORK
                    144: *> \verbatim
                    145: *>          LWORK is INTEGER
                    146: *>          The dimension of the array WORK.
                    147: *>          LWORK >= max( 1, MN + max( MN, NRHS ) ).
                    148: *>          For optimal performance,
                    149: *>          LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
                    150: *>          where MN = min(M,N) and NB is the optimum block size.
                    151: *>
                    152: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    153: *>          only calculates the optimal size of the WORK array, returns
                    154: *>          this value as the first entry of the WORK array, and no error
                    155: *>          message related to LWORK is issued by XERBLA.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[out] INFO
                    159: *> \verbatim
                    160: *>          INFO is INTEGER
                    161: *>          = 0:  successful exit
                    162: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    163: *>          > 0:  if INFO =  i, the i-th diagonal element of the
                    164: *>                triangular factor of A is zero, so that A does not have
                    165: *>                full rank; the least squares solution could not be
                    166: *>                computed.
                    167: *> \endverbatim
                    168: *
                    169: *  Authors:
                    170: *  ========
                    171: *
                    172: *> \author Univ. of Tennessee 
                    173: *> \author Univ. of California Berkeley 
                    174: *> \author Univ. of Colorado Denver 
                    175: *> \author NAG Ltd. 
                    176: *
                    177: *> \date November 2011
                    178: *
                    179: *> \ingroup complex16GEsolve
                    180: *
                    181: *  =====================================================================
1.1       bertrand  182:       SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
                    183:      $                  INFO )
                    184: *
1.9       bertrand  185: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  186: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    187: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  188: *     November 2011
1.1       bertrand  189: *
                    190: *     .. Scalar Arguments ..
                    191:       CHARACTER          TRANS
                    192:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
                    193: *     ..
                    194: *     .. Array Arguments ..
                    195:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                    196: *     ..
                    197: *
                    198: *  =====================================================================
                    199: *
                    200: *     .. Parameters ..
                    201:       DOUBLE PRECISION   ZERO, ONE
                    202:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    203:       COMPLEX*16         CZERO
                    204:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
                    205: *     ..
                    206: *     .. Local Scalars ..
                    207:       LOGICAL            LQUERY, TPSD
                    208:       INTEGER            BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
                    209:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM
                    210: *     ..
                    211: *     .. Local Arrays ..
                    212:       DOUBLE PRECISION   RWORK( 1 )
                    213: *     ..
                    214: *     .. External Functions ..
                    215:       LOGICAL            LSAME
                    216:       INTEGER            ILAENV
                    217:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    218:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    219: *     ..
                    220: *     .. External Subroutines ..
                    221:       EXTERNAL           DLABAD, XERBLA, ZGELQF, ZGEQRF, ZLASCL, ZLASET,
                    222:      $                   ZTRTRS, ZUNMLQ, ZUNMQR
                    223: *     ..
                    224: *     .. Intrinsic Functions ..
                    225:       INTRINSIC          DBLE, MAX, MIN
                    226: *     ..
                    227: *     .. Executable Statements ..
                    228: *
                    229: *     Test the input arguments.
                    230: *
                    231:       INFO = 0
                    232:       MN = MIN( M, N )
                    233:       LQUERY = ( LWORK.EQ.-1 )
                    234:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
                    235:          INFO = -1
                    236:       ELSE IF( M.LT.0 ) THEN
                    237:          INFO = -2
                    238:       ELSE IF( N.LT.0 ) THEN
                    239:          INFO = -3
                    240:       ELSE IF( NRHS.LT.0 ) THEN
                    241:          INFO = -4
                    242:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    243:          INFO = -6
                    244:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    245:          INFO = -8
                    246:       ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
                    247:      $          THEN
                    248:          INFO = -10
                    249:       END IF
                    250: *
                    251: *     Figure out optimal block size
                    252: *
                    253:       IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
                    254: *
                    255:          TPSD = .TRUE.
                    256:          IF( LSAME( TRANS, 'N' ) )
                    257:      $      TPSD = .FALSE.
                    258: *
                    259:          IF( M.GE.N ) THEN
                    260:             NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
                    261:             IF( TPSD ) THEN
                    262:                NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LN', M, NRHS, N,
                    263:      $              -1 ) )
                    264:             ELSE
                    265:                NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LC', M, NRHS, N,
                    266:      $              -1 ) )
                    267:             END IF
                    268:          ELSE
                    269:             NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
                    270:             IF( TPSD ) THEN
                    271:                NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LC', N, NRHS, M,
                    272:      $              -1 ) )
                    273:             ELSE
                    274:                NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LN', N, NRHS, M,
                    275:      $              -1 ) )
                    276:             END IF
                    277:          END IF
                    278: *
                    279:          WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB )
                    280:          WORK( 1 ) = DBLE( WSIZE )
                    281: *
                    282:       END IF
                    283: *
                    284:       IF( INFO.NE.0 ) THEN
                    285:          CALL XERBLA( 'ZGELS ', -INFO )
                    286:          RETURN
                    287:       ELSE IF( LQUERY ) THEN
                    288:          RETURN
                    289:       END IF
                    290: *
                    291: *     Quick return if possible
                    292: *
                    293:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
                    294:          CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    295:          RETURN
                    296:       END IF
                    297: *
                    298: *     Get machine parameters
                    299: *
                    300:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    301:       BIGNUM = ONE / SMLNUM
                    302:       CALL DLABAD( SMLNUM, BIGNUM )
                    303: *
                    304: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
                    305: *
                    306:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
                    307:       IASCL = 0
                    308:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    309: *
                    310: *        Scale matrix norm up to SMLNUM
                    311: *
                    312:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    313:          IASCL = 1
                    314:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    315: *
                    316: *        Scale matrix norm down to BIGNUM
                    317: *
                    318:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    319:          IASCL = 2
                    320:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    321: *
                    322: *        Matrix all zero. Return zero solution.
                    323: *
                    324:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    325:          GO TO 50
                    326:       END IF
                    327: *
                    328:       BROW = M
                    329:       IF( TPSD )
                    330:      $   BROW = N
                    331:       BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
                    332:       IBSCL = 0
                    333:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    334: *
                    335: *        Scale matrix norm up to SMLNUM
                    336: *
                    337:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
                    338:      $                INFO )
                    339:          IBSCL = 1
                    340:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    341: *
                    342: *        Scale matrix norm down to BIGNUM
                    343: *
                    344:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
                    345:      $                INFO )
                    346:          IBSCL = 2
                    347:       END IF
                    348: *
                    349:       IF( M.GE.N ) THEN
                    350: *
                    351: *        compute QR factorization of A
                    352: *
                    353:          CALL ZGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
                    354:      $                INFO )
                    355: *
                    356: *        workspace at least N, optimally N*NB
                    357: *
                    358:          IF( .NOT.TPSD ) THEN
                    359: *
                    360: *           Least-Squares Problem min || A * X - B ||
                    361: *
1.8       bertrand  362: *           B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
1.1       bertrand  363: *
                    364:             CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, N, A,
                    365:      $                   LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
                    366:      $                   INFO )
                    367: *
                    368: *           workspace at least NRHS, optimally NRHS*NB
                    369: *
                    370: *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
                    371: *
                    372:             CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
                    373:      $                   A, LDA, B, LDB, INFO )
                    374: *
                    375:             IF( INFO.GT.0 ) THEN
                    376:                RETURN
                    377:             END IF
                    378: *
                    379:             SCLLEN = N
                    380: *
                    381:          ELSE
                    382: *
1.8       bertrand  383: *           Overdetermined system of equations A**H * X = B
1.1       bertrand  384: *
1.8       bertrand  385: *           B(1:N,1:NRHS) := inv(R**H) * B(1:N,1:NRHS)
1.1       bertrand  386: *
                    387:             CALL ZTRTRS( 'Upper', 'Conjugate transpose','Non-unit',
                    388:      $                   N, NRHS, A, LDA, B, LDB, INFO )
                    389: *
                    390:             IF( INFO.GT.0 ) THEN
                    391:                RETURN
                    392:             END IF
                    393: *
                    394: *           B(N+1:M,1:NRHS) = ZERO
                    395: *
                    396:             DO 20 J = 1, NRHS
                    397:                DO 10 I = N + 1, M
                    398:                   B( I, J ) = CZERO
                    399:    10          CONTINUE
                    400:    20       CONTINUE
                    401: *
                    402: *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
                    403: *
                    404:             CALL ZUNMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA,
                    405:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
                    406:      $                   INFO )
                    407: *
                    408: *           workspace at least NRHS, optimally NRHS*NB
                    409: *
                    410:             SCLLEN = M
                    411: *
                    412:          END IF
                    413: *
                    414:       ELSE
                    415: *
                    416: *        Compute LQ factorization of A
                    417: *
                    418:          CALL ZGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
                    419:      $                INFO )
                    420: *
                    421: *        workspace at least M, optimally M*NB.
                    422: *
                    423:          IF( .NOT.TPSD ) THEN
                    424: *
                    425: *           underdetermined system of equations A * X = B
                    426: *
                    427: *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
                    428: *
                    429:             CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
                    430:      $                   A, LDA, B, LDB, INFO )
                    431: *
                    432:             IF( INFO.GT.0 ) THEN
                    433:                RETURN
                    434:             END IF
                    435: *
                    436: *           B(M+1:N,1:NRHS) = 0
                    437: *
                    438:             DO 40 J = 1, NRHS
                    439:                DO 30 I = M + 1, N
                    440:                   B( I, J ) = CZERO
                    441:    30          CONTINUE
                    442:    40       CONTINUE
                    443: *
1.8       bertrand  444: *           B(1:N,1:NRHS) := Q(1:N,:)**H * B(1:M,1:NRHS)
1.1       bertrand  445: *
                    446:             CALL ZUNMLQ( 'Left', 'Conjugate transpose', N, NRHS, M, A,
                    447:      $                   LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
                    448:      $                   INFO )
                    449: *
                    450: *           workspace at least NRHS, optimally NRHS*NB
                    451: *
                    452:             SCLLEN = N
                    453: *
                    454:          ELSE
                    455: *
1.8       bertrand  456: *           overdetermined system min || A**H * X - B ||
1.1       bertrand  457: *
                    458: *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
                    459: *
                    460:             CALL ZUNMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA,
                    461:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
                    462:      $                   INFO )
                    463: *
                    464: *           workspace at least NRHS, optimally NRHS*NB
                    465: *
1.8       bertrand  466: *           B(1:M,1:NRHS) := inv(L**H) * B(1:M,1:NRHS)
1.1       bertrand  467: *
                    468:             CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
                    469:      $                   M, NRHS, A, LDA, B, LDB, INFO )
                    470: *
                    471:             IF( INFO.GT.0 ) THEN
                    472:                RETURN
                    473:             END IF
                    474: *
                    475:             SCLLEN = M
                    476: *
                    477:          END IF
                    478: *
                    479:       END IF
                    480: *
                    481: *     Undo scaling
                    482: *
                    483:       IF( IASCL.EQ.1 ) THEN
                    484:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
                    485:      $                INFO )
                    486:       ELSE IF( IASCL.EQ.2 ) THEN
                    487:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
                    488:      $                INFO )
                    489:       END IF
                    490:       IF( IBSCL.EQ.1 ) THEN
                    491:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
                    492:      $                INFO )
                    493:       ELSE IF( IBSCL.EQ.2 ) THEN
                    494:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
                    495:      $                INFO )
                    496:       END IF
                    497: *
                    498:    50 CONTINUE
                    499:       WORK( 1 ) = DBLE( WSIZE )
                    500: *
                    501:       RETURN
                    502: *
                    503: *     End of ZGELS
                    504: *
                    505:       END

CVSweb interface <joel.bertrand@systella.fr>