File:  [local] / rpl / lapack / lapack / zgelqt3.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:17 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact WY representation of Q.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGELQT3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelqt3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelqt3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelqt3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       RECURSIVE SUBROUTINE ZGELQT3( M, N, A, LDA, T, LDT, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER   INFO, LDA, M, N, LDT
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       COMPLEX*16   A( LDA, * ), T( LDT, * )
   28: *       ..
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> ZGELQT3 recursively computes a LQ factorization of a complex M-by-N
   37: *> matrix A, using the compact WY representation of Q.
   38: *>
   39: *> Based on the algorithm of Elmroth and Gustavson,
   40: *> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] M
   47: *> \verbatim
   48: *>          M is INTEGER
   49: *>          The number of rows of the matrix A.  M =< N.
   50: *> \endverbatim
   51: *>
   52: *> \param[in] N
   53: *> \verbatim
   54: *>          N is INTEGER
   55: *>          The number of columns of the matrix A.  N >= 0.
   56: *> \endverbatim
   57: *>
   58: *> \param[in,out] A
   59: *> \verbatim
   60: *>          A is COMPLEX*16 array, dimension (LDA,N)
   61: *>          On entry, the complex M-by-N matrix A.  On exit, the elements on and
   62: *>          below the diagonal contain the N-by-N lower triangular matrix L; the
   63: *>          elements above the diagonal are the rows of V.  See below for
   64: *>          further details.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] LDA
   68: *> \verbatim
   69: *>          LDA is INTEGER
   70: *>          The leading dimension of the array A.  LDA >= max(1,M).
   71: *> \endverbatim
   72: *>
   73: *> \param[out] T
   74: *> \verbatim
   75: *>          T is COMPLEX*16 array, dimension (LDT,N)
   76: *>          The N-by-N upper triangular factor of the block reflector.
   77: *>          The elements on and above the diagonal contain the block
   78: *>          reflector T; the elements below the diagonal are not used.
   79: *>          See below for further details.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] LDT
   83: *> \verbatim
   84: *>          LDT is INTEGER
   85: *>          The leading dimension of the array T.  LDT >= max(1,N).
   86: *> \endverbatim
   87: *>
   88: *> \param[out] INFO
   89: *> \verbatim
   90: *>          INFO is INTEGER
   91: *>          = 0: successful exit
   92: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   93: *> \endverbatim
   94: *
   95: *  Authors:
   96: *  ========
   97: *
   98: *> \author Univ. of Tennessee
   99: *> \author Univ. of California Berkeley
  100: *> \author Univ. of Colorado Denver
  101: *> \author NAG Ltd.
  102: *
  103: *> \ingroup doubleGEcomputational
  104: *
  105: *> \par Further Details:
  106: *  =====================
  107: *>
  108: *> \verbatim
  109: *>
  110: *>  The matrix V stores the elementary reflectors H(i) in the i-th row
  111: *>  above the diagonal. For example, if M=5 and N=3, the matrix V is
  112: *>
  113: *>               V = (  1  v1 v1 v1 v1 )
  114: *>                   (     1  v2 v2 v2 )
  115: *>                   (     1  v3 v3 v3 )
  116: *>
  117: *>
  118: *>  where the vi's represent the vectors which define H(i), which are returned
  119: *>  in the matrix A.  The 1's along the diagonal of V are not stored in A.  The
  120: *>  block reflector H is then given by
  121: *>
  122: *>               H = I - V * T * V**T
  123: *>
  124: *>  where V**T is the transpose of V.
  125: *>
  126: *>  For details of the algorithm, see Elmroth and Gustavson (cited above).
  127: *> \endverbatim
  128: *>
  129: *  =====================================================================
  130:       RECURSIVE SUBROUTINE ZGELQT3( M, N, A, LDA, T, LDT, INFO )
  131: *
  132: *  -- LAPACK computational routine --
  133: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  134: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  135: *
  136: *     .. Scalar Arguments ..
  137:       INTEGER   INFO, LDA, M, N, LDT
  138: *     ..
  139: *     .. Array Arguments ..
  140:       COMPLEX*16   A( LDA, * ), T( LDT, * )
  141: *     ..
  142: *
  143: *  =====================================================================
  144: *
  145: *     .. Parameters ..
  146:       COMPLEX*16   ONE, ZERO
  147:       PARAMETER ( ONE = (1.0D+00,0.0D+00) )
  148:       PARAMETER ( ZERO = (0.0D+00,0.0D+00))
  149: *     ..
  150: *     .. Local Scalars ..
  151:       INTEGER   I, I1, J, J1, M1, M2, IINFO
  152: *     ..
  153: *     .. External Subroutines ..
  154:       EXTERNAL  ZLARFG, ZTRMM, ZGEMM, XERBLA
  155: *     ..
  156: *     .. Executable Statements ..
  157: *
  158:       INFO = 0
  159:       IF( M .LT. 0 ) THEN
  160:          INFO = -1
  161:       ELSE IF( N .LT. M ) THEN
  162:          INFO = -2
  163:       ELSE IF( LDA .LT. MAX( 1, M ) ) THEN
  164:          INFO = -4
  165:       ELSE IF( LDT .LT. MAX( 1, M ) ) THEN
  166:          INFO = -6
  167:       END IF
  168:       IF( INFO.NE.0 ) THEN
  169:          CALL XERBLA( 'ZGELQT3', -INFO )
  170:          RETURN
  171:       END IF
  172: *
  173:       IF( M.EQ.1 ) THEN
  174: *
  175: *        Compute Householder transform when M=1
  176: *
  177:          CALL ZLARFG( N, A, A( 1, MIN( 2, N ) ), LDA, T )
  178:          T(1,1)=CONJG(T(1,1))
  179: *
  180:       ELSE
  181: *
  182: *        Otherwise, split A into blocks...
  183: *
  184:          M1 = M/2
  185:          M2 = M-M1
  186:          I1 = MIN( M1+1, M )
  187:          J1 = MIN( M+1, N )
  188: *
  189: *        Compute A(1:M1,1:N) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
  190: *
  191:          CALL ZGELQT3( M1, N, A, LDA, T, LDT, IINFO )
  192: *
  193: *        Compute A(J1:M,1:N) =  A(J1:M,1:N) Q1^H [workspace: T(1:N1,J1:N)]
  194: *
  195:          DO I=1,M2
  196:             DO J=1,M1
  197:                T(  I+M1, J ) = A( I+M1, J )
  198:             END DO
  199:          END DO
  200:          CALL ZTRMM( 'R', 'U', 'C', 'U', M2, M1, ONE,
  201:      &               A, LDA, T( I1, 1 ), LDT )
  202: *
  203:          CALL ZGEMM( 'N', 'C', M2, M1, N-M1, ONE, A( I1, I1 ), LDA,
  204:      &               A( 1, I1 ), LDA, ONE, T( I1, 1 ), LDT)
  205: *
  206:          CALL ZTRMM( 'R', 'U', 'N', 'N', M2, M1, ONE,
  207:      &               T, LDT, T( I1, 1 ), LDT )
  208: *
  209:          CALL ZGEMM( 'N', 'N', M2, N-M1, M1, -ONE, T( I1, 1 ), LDT,
  210:      &                A( 1, I1 ), LDA, ONE, A( I1, I1 ), LDA )
  211: *
  212:          CALL ZTRMM( 'R', 'U', 'N', 'U', M2, M1 , ONE,
  213:      &               A, LDA, T( I1, 1 ), LDT )
  214: *
  215:          DO I=1,M2
  216:             DO J=1,M1
  217:                A(  I+M1, J ) = A( I+M1, J ) - T( I+M1, J )
  218:                T( I+M1, J )= ZERO
  219:             END DO
  220:          END DO
  221: *
  222: *        Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
  223: *
  224:          CALL ZGELQT3( M2, N-M1, A( I1, I1 ), LDA,
  225:      &                T( I1, I1 ), LDT, IINFO )
  226: *
  227: *        Compute T3 = T(J1:N1,1:N) = -T1 Y1^H Y2 T2
  228: *
  229:          DO I=1,M2
  230:             DO J=1,M1
  231:                T( J, I+M1  ) = (A( J, I+M1 ))
  232:             END DO
  233:          END DO
  234: *
  235:          CALL ZTRMM( 'R', 'U', 'C', 'U', M1, M2, ONE,
  236:      &               A( I1, I1 ), LDA, T( 1, I1 ), LDT )
  237: *
  238:          CALL ZGEMM( 'N', 'C', M1, M2, N-M, ONE, A( 1, J1 ), LDA,
  239:      &               A( I1, J1 ), LDA, ONE, T( 1, I1 ), LDT )
  240: *
  241:          CALL ZTRMM( 'L', 'U', 'N', 'N', M1, M2, -ONE, T, LDT,
  242:      &               T( 1, I1 ), LDT )
  243: *
  244:          CALL ZTRMM( 'R', 'U', 'N', 'N', M1, M2, ONE,
  245:      &               T( I1, I1 ), LDT, T( 1, I1 ), LDT )
  246: *
  247: *
  248: *
  249: *        Y = (Y1,Y2); L = [ L1            0  ];  T = [T1 T3]
  250: *                         [ A(1:N1,J1:N)  L2 ]       [ 0 T2]
  251: *
  252:       END IF
  253: *
  254:       RETURN
  255: *
  256: *     End of ZGELQT3
  257: *
  258:       END

CVSweb interface <joel.bertrand@systella.fr>