Annotation of rpl/lapack/lapack/zgelqt3.f, revision 1.5

1.1       bertrand    1: *> \brief \b ZGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact WY representation of Q.
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
1.5     ! bertrand    9: *> Download ZGELQT3 + dependencies
1.1       bertrand   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelqt3.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelqt3.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelqt3.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       RECURSIVE SUBROUTINE ZGELQT3( M, N, A, LDA, T, LDT, INFO )
                     22: *
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER   INFO, LDA, M, N, LDT
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       COMPLEX*16   A( LDA, * ), T( LDT, * )
                     28: *       ..
                     29: *
                     30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
1.5     ! bertrand   36: *> ZGELQT3 recursively computes a LQ factorization of a complex M-by-N
1.1       bertrand   37: *> matrix A, using the compact WY representation of Q.
                     38: *>
                     39: *> Based on the algorithm of Elmroth and Gustavson,
                     40: *> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
                     41: *> \endverbatim
                     42: *
                     43: *  Arguments:
                     44: *  ==========
                     45: *
                     46: *> \param[in] M
                     47: *> \verbatim
                     48: *>          M is INTEGER
                     49: *>          The number of rows of the matrix A.  M =< N.
                     50: *> \endverbatim
                     51: *>
                     52: *> \param[in] N
                     53: *> \verbatim
                     54: *>          N is INTEGER
                     55: *>          The number of columns of the matrix A.  N >= 0.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in,out] A
                     59: *> \verbatim
                     60: *>          A is COMPLEX*16 array, dimension (LDA,N)
1.5     ! bertrand   61: *>          On entry, the complex M-by-N matrix A.  On exit, the elements on and
1.1       bertrand   62: *>          below the diagonal contain the N-by-N lower triangular matrix L; the
                     63: *>          elements above the diagonal are the rows of V.  See below for
                     64: *>          further details.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] LDA
                     68: *> \verbatim
                     69: *>          LDA is INTEGER
                     70: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[out] T
                     74: *> \verbatim
                     75: *>          T is COMPLEX*16 array, dimension (LDT,N)
                     76: *>          The N-by-N upper triangular factor of the block reflector.
                     77: *>          The elements on and above the diagonal contain the block
                     78: *>          reflector T; the elements below the diagonal are not used.
                     79: *>          See below for further details.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] LDT
                     83: *> \verbatim
                     84: *>          LDT is INTEGER
                     85: *>          The leading dimension of the array T.  LDT >= max(1,N).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[out] INFO
                     89: *> \verbatim
                     90: *>          INFO is INTEGER
                     91: *>          = 0: successful exit
                     92: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                     93: *> \endverbatim
                     94: *
                     95: *  Authors:
                     96: *  ========
                     97: *
                     98: *> \author Univ. of Tennessee
                     99: *> \author Univ. of California Berkeley
                    100: *> \author Univ. of Colorado Denver
                    101: *> \author NAG Ltd.
                    102: *
                    103: *> \ingroup doubleGEcomputational
                    104: *
                    105: *> \par Further Details:
                    106: *  =====================
                    107: *>
                    108: *> \verbatim
                    109: *>
1.3       bertrand  110: *>  The matrix V stores the elementary reflectors H(i) in the i-th row
                    111: *>  above the diagonal. For example, if M=5 and N=3, the matrix V is
1.1       bertrand  112: *>
                    113: *>               V = (  1  v1 v1 v1 v1 )
                    114: *>                   (     1  v2 v2 v2 )
                    115: *>                   (     1  v3 v3 v3 )
                    116: *>
                    117: *>
                    118: *>  where the vi's represent the vectors which define H(i), which are returned
                    119: *>  in the matrix A.  The 1's along the diagonal of V are not stored in A.  The
                    120: *>  block reflector H is then given by
                    121: *>
                    122: *>               H = I - V * T * V**T
                    123: *>
                    124: *>  where V**T is the transpose of V.
                    125: *>
                    126: *>  For details of the algorithm, see Elmroth and Gustavson (cited above).
                    127: *> \endverbatim
                    128: *>
                    129: *  =====================================================================
                    130:       RECURSIVE SUBROUTINE ZGELQT3( M, N, A, LDA, T, LDT, INFO )
                    131: *
1.5     ! bertrand  132: *  -- LAPACK computational routine --
1.1       bertrand  133: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    134: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    135: *
                    136: *     .. Scalar Arguments ..
                    137:       INTEGER   INFO, LDA, M, N, LDT
                    138: *     ..
                    139: *     .. Array Arguments ..
                    140:       COMPLEX*16   A( LDA, * ), T( LDT, * )
                    141: *     ..
                    142: *
                    143: *  =====================================================================
                    144: *
                    145: *     .. Parameters ..
                    146:       COMPLEX*16   ONE, ZERO
                    147:       PARAMETER ( ONE = (1.0D+00,0.0D+00) )
                    148:       PARAMETER ( ZERO = (0.0D+00,0.0D+00))
                    149: *     ..
                    150: *     .. Local Scalars ..
1.3       bertrand  151:       INTEGER   I, I1, J, J1, M1, M2, IINFO
1.1       bertrand  152: *     ..
                    153: *     .. External Subroutines ..
                    154:       EXTERNAL  ZLARFG, ZTRMM, ZGEMM, XERBLA
                    155: *     ..
                    156: *     .. Executable Statements ..
                    157: *
                    158:       INFO = 0
                    159:       IF( M .LT. 0 ) THEN
                    160:          INFO = -1
                    161:       ELSE IF( N .LT. M ) THEN
                    162:          INFO = -2
                    163:       ELSE IF( LDA .LT. MAX( 1, M ) ) THEN
                    164:          INFO = -4
                    165:       ELSE IF( LDT .LT. MAX( 1, M ) ) THEN
                    166:          INFO = -6
                    167:       END IF
                    168:       IF( INFO.NE.0 ) THEN
                    169:          CALL XERBLA( 'ZGELQT3', -INFO )
                    170:          RETURN
                    171:       END IF
                    172: *
                    173:       IF( M.EQ.1 ) THEN
                    174: *
1.5     ! bertrand  175: *        Compute Householder transform when M=1
1.1       bertrand  176: *
                    177:          CALL ZLARFG( N, A, A( 1, MIN( 2, N ) ), LDA, T )
                    178:          T(1,1)=CONJG(T(1,1))
                    179: *
                    180:       ELSE
                    181: *
                    182: *        Otherwise, split A into blocks...
                    183: *
                    184:          M1 = M/2
                    185:          M2 = M-M1
                    186:          I1 = MIN( M1+1, M )
                    187:          J1 = MIN( M+1, N )
                    188: *
                    189: *        Compute A(1:M1,1:N) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
                    190: *
                    191:          CALL ZGELQT3( M1, N, A, LDA, T, LDT, IINFO )
                    192: *
                    193: *        Compute A(J1:M,1:N) =  A(J1:M,1:N) Q1^H [workspace: T(1:N1,J1:N)]
                    194: *
                    195:          DO I=1,M2
                    196:             DO J=1,M1
                    197:                T(  I+M1, J ) = A( I+M1, J )
                    198:             END DO
                    199:          END DO
                    200:          CALL ZTRMM( 'R', 'U', 'C', 'U', M2, M1, ONE,
                    201:      &               A, LDA, T( I1, 1 ), LDT )
                    202: *
                    203:          CALL ZGEMM( 'N', 'C', M2, M1, N-M1, ONE, A( I1, I1 ), LDA,
                    204:      &               A( 1, I1 ), LDA, ONE, T( I1, 1 ), LDT)
                    205: *
                    206:          CALL ZTRMM( 'R', 'U', 'N', 'N', M2, M1, ONE,
                    207:      &               T, LDT, T( I1, 1 ), LDT )
                    208: *
                    209:          CALL ZGEMM( 'N', 'N', M2, N-M1, M1, -ONE, T( I1, 1 ), LDT,
                    210:      &                A( 1, I1 ), LDA, ONE, A( I1, I1 ), LDA )
                    211: *
                    212:          CALL ZTRMM( 'R', 'U', 'N', 'U', M2, M1 , ONE,
                    213:      &               A, LDA, T( I1, 1 ), LDT )
                    214: *
                    215:          DO I=1,M2
                    216:             DO J=1,M1
                    217:                A(  I+M1, J ) = A( I+M1, J ) - T( I+M1, J )
                    218:                T( I+M1, J )= ZERO
                    219:             END DO
                    220:          END DO
                    221: *
                    222: *        Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
                    223: *
                    224:          CALL ZGELQT3( M2, N-M1, A( I1, I1 ), LDA,
                    225:      &                T( I1, I1 ), LDT, IINFO )
                    226: *
                    227: *        Compute T3 = T(J1:N1,1:N) = -T1 Y1^H Y2 T2
                    228: *
                    229:          DO I=1,M2
                    230:             DO J=1,M1
                    231:                T( J, I+M1  ) = (A( J, I+M1 ))
                    232:             END DO
                    233:          END DO
                    234: *
                    235:          CALL ZTRMM( 'R', 'U', 'C', 'U', M1, M2, ONE,
                    236:      &               A( I1, I1 ), LDA, T( 1, I1 ), LDT )
                    237: *
                    238:          CALL ZGEMM( 'N', 'C', M1, M2, N-M, ONE, A( 1, J1 ), LDA,
                    239:      &               A( I1, J1 ), LDA, ONE, T( 1, I1 ), LDT )
                    240: *
                    241:          CALL ZTRMM( 'L', 'U', 'N', 'N', M1, M2, -ONE, T, LDT,
                    242:      &               T( 1, I1 ), LDT )
                    243: *
                    244:          CALL ZTRMM( 'R', 'U', 'N', 'N', M1, M2, ONE,
                    245:      &               T( I1, I1 ), LDT, T( 1, I1 ), LDT )
                    246: *
                    247: *
                    248: *
                    249: *        Y = (Y1,Y2); L = [ L1            0  ];  T = [T1 T3]
                    250: *                         [ A(1:N1,J1:N)  L2 ]       [ 0 T2]
                    251: *
                    252:       END IF
                    253: *
                    254:       RETURN
                    255: *
                    256: *     End of ZGELQT3
                    257: *
                    258:       END

CVSweb interface <joel.bertrand@systella.fr>