File:  [local] / rpl / lapack / lapack / zgebd2.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:30 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            INFO, LDA, M, N
   10: *     ..
   11: *     .. Array Arguments ..
   12:       DOUBLE PRECISION   D( * ), E( * )
   13:       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
   14: *     ..
   15: *
   16: *  Purpose
   17: *  =======
   18: *
   19: *  ZGEBD2 reduces a complex general m by n matrix A to upper or lower
   20: *  real bidiagonal form B by a unitary transformation: Q' * A * P = B.
   21: *
   22: *  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
   23: *
   24: *  Arguments
   25: *  =========
   26: *
   27: *  M       (input) INTEGER
   28: *          The number of rows in the matrix A.  M >= 0.
   29: *
   30: *  N       (input) INTEGER
   31: *          The number of columns in the matrix A.  N >= 0.
   32: *
   33: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   34: *          On entry, the m by n general matrix to be reduced.
   35: *          On exit,
   36: *          if m >= n, the diagonal and the first superdiagonal are
   37: *            overwritten with the upper bidiagonal matrix B; the
   38: *            elements below the diagonal, with the array TAUQ, represent
   39: *            the unitary matrix Q as a product of elementary
   40: *            reflectors, and the elements above the first superdiagonal,
   41: *            with the array TAUP, represent the unitary matrix P as
   42: *            a product of elementary reflectors;
   43: *          if m < n, the diagonal and the first subdiagonal are
   44: *            overwritten with the lower bidiagonal matrix B; the
   45: *            elements below the first subdiagonal, with the array TAUQ,
   46: *            represent the unitary matrix Q as a product of
   47: *            elementary reflectors, and the elements above the diagonal,
   48: *            with the array TAUP, represent the unitary matrix P as
   49: *            a product of elementary reflectors.
   50: *          See Further Details.
   51: *
   52: *  LDA     (input) INTEGER
   53: *          The leading dimension of the array A.  LDA >= max(1,M).
   54: *
   55: *  D       (output) DOUBLE PRECISION array, dimension (min(M,N))
   56: *          The diagonal elements of the bidiagonal matrix B:
   57: *          D(i) = A(i,i).
   58: *
   59: *  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
   60: *          The off-diagonal elements of the bidiagonal matrix B:
   61: *          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
   62: *          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
   63: *
   64: *  TAUQ    (output) COMPLEX*16 array dimension (min(M,N))
   65: *          The scalar factors of the elementary reflectors which
   66: *          represent the unitary matrix Q. See Further Details.
   67: *
   68: *  TAUP    (output) COMPLEX*16 array, dimension (min(M,N))
   69: *          The scalar factors of the elementary reflectors which
   70: *          represent the unitary matrix P. See Further Details.
   71: *
   72: *  WORK    (workspace) COMPLEX*16 array, dimension (max(M,N))
   73: *
   74: *  INFO    (output) INTEGER
   75: *          = 0: successful exit
   76: *          < 0: if INFO = -i, the i-th argument had an illegal value.
   77: *
   78: *  Further Details
   79: *  ===============
   80: *
   81: *  The matrices Q and P are represented as products of elementary
   82: *  reflectors:
   83: *
   84: *  If m >= n,
   85: *
   86: *     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
   87: *
   88: *  Each H(i) and G(i) has the form:
   89: *
   90: *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
   91: *
   92: *  where tauq and taup are complex scalars, and v and u are complex
   93: *  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
   94: *  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
   95: *  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
   96: *
   97: *  If m < n,
   98: *
   99: *     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
  100: *
  101: *  Each H(i) and G(i) has the form:
  102: *
  103: *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
  104: *
  105: *  where tauq and taup are complex scalars, v and u are complex vectors;
  106: *  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
  107: *  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
  108: *  tauq is stored in TAUQ(i) and taup in TAUP(i).
  109: *
  110: *  The contents of A on exit are illustrated by the following examples:
  111: *
  112: *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
  113: *
  114: *    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
  115: *    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
  116: *    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
  117: *    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
  118: *    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
  119: *    (  v1  v2  v3  v4  v5 )
  120: *
  121: *  where d and e denote diagonal and off-diagonal elements of B, vi
  122: *  denotes an element of the vector defining H(i), and ui an element of
  123: *  the vector defining G(i).
  124: *
  125: *  =====================================================================
  126: *
  127: *     .. Parameters ..
  128:       COMPLEX*16         ZERO, ONE
  129:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
  130:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
  131: *     ..
  132: *     .. Local Scalars ..
  133:       INTEGER            I
  134:       COMPLEX*16         ALPHA
  135: *     ..
  136: *     .. External Subroutines ..
  137:       EXTERNAL           XERBLA, ZLACGV, ZLARF, ZLARFG
  138: *     ..
  139: *     .. Intrinsic Functions ..
  140:       INTRINSIC          DCONJG, MAX, MIN
  141: *     ..
  142: *     .. Executable Statements ..
  143: *
  144: *     Test the input parameters
  145: *
  146:       INFO = 0
  147:       IF( M.LT.0 ) THEN
  148:          INFO = -1
  149:       ELSE IF( N.LT.0 ) THEN
  150:          INFO = -2
  151:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  152:          INFO = -4
  153:       END IF
  154:       IF( INFO.LT.0 ) THEN
  155:          CALL XERBLA( 'ZGEBD2', -INFO )
  156:          RETURN
  157:       END IF
  158: *
  159:       IF( M.GE.N ) THEN
  160: *
  161: *        Reduce to upper bidiagonal form
  162: *
  163:          DO 10 I = 1, N
  164: *
  165: *           Generate elementary reflector H(i) to annihilate A(i+1:m,i)
  166: *
  167:             ALPHA = A( I, I )
  168:             CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
  169:      $                   TAUQ( I ) )
  170:             D( I ) = ALPHA
  171:             A( I, I ) = ONE
  172: *
  173: *           Apply H(i)' to A(i:m,i+1:n) from the left
  174: *
  175:             IF( I.LT.N )
  176:      $         CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
  177:      $                     DCONJG( TAUQ( I ) ), A( I, I+1 ), LDA, WORK )
  178:             A( I, I ) = D( I )
  179: *
  180:             IF( I.LT.N ) THEN
  181: *
  182: *              Generate elementary reflector G(i) to annihilate
  183: *              A(i,i+2:n)
  184: *
  185:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  186:                ALPHA = A( I, I+1 )
  187:                CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
  188:      $                      TAUP( I ) )
  189:                E( I ) = ALPHA
  190:                A( I, I+1 ) = ONE
  191: *
  192: *              Apply G(i) to A(i+1:m,i+1:n) from the right
  193: *
  194:                CALL ZLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
  195:      $                     TAUP( I ), A( I+1, I+1 ), LDA, WORK )
  196:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  197:                A( I, I+1 ) = E( I )
  198:             ELSE
  199:                TAUP( I ) = ZERO
  200:             END IF
  201:    10    CONTINUE
  202:       ELSE
  203: *
  204: *        Reduce to lower bidiagonal form
  205: *
  206:          DO 20 I = 1, M
  207: *
  208: *           Generate elementary reflector G(i) to annihilate A(i,i+1:n)
  209: *
  210:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
  211:             ALPHA = A( I, I )
  212:             CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
  213:      $                   TAUP( I ) )
  214:             D( I ) = ALPHA
  215:             A( I, I ) = ONE
  216: *
  217: *           Apply G(i) to A(i+1:m,i:n) from the right
  218: *
  219:             IF( I.LT.M )
  220:      $         CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
  221:      $                     TAUP( I ), A( I+1, I ), LDA, WORK )
  222:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
  223:             A( I, I ) = D( I )
  224: *
  225:             IF( I.LT.M ) THEN
  226: *
  227: *              Generate elementary reflector H(i) to annihilate
  228: *              A(i+2:m,i)
  229: *
  230:                ALPHA = A( I+1, I )
  231:                CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
  232:      $                      TAUQ( I ) )
  233:                E( I ) = ALPHA
  234:                A( I+1, I ) = ONE
  235: *
  236: *              Apply H(i)' to A(i+1:m,i+1:n) from the left
  237: *
  238:                CALL ZLARF( 'Left', M-I, N-I, A( I+1, I ), 1,
  239:      $                     DCONJG( TAUQ( I ) ), A( I+1, I+1 ), LDA,
  240:      $                     WORK )
  241:                A( I+1, I ) = E( I )
  242:             ELSE
  243:                TAUQ( I ) = ZERO
  244:             END IF
  245:    20    CONTINUE
  246:       END IF
  247:       RETURN
  248: *
  249: *     End of ZGEBD2
  250: *
  251:       END

CVSweb interface <joel.bertrand@systella.fr>