Annotation of rpl/lapack/lapack/zgebd2.f, revision 1.5

1.1       bertrand    1:       SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            INFO, LDA, M, N
                     10: *     ..
                     11: *     .. Array Arguments ..
                     12:       DOUBLE PRECISION   D( * ), E( * )
                     13:       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
                     14: *     ..
                     15: *
                     16: *  Purpose
                     17: *  =======
                     18: *
                     19: *  ZGEBD2 reduces a complex general m by n matrix A to upper or lower
                     20: *  real bidiagonal form B by a unitary transformation: Q' * A * P = B.
                     21: *
                     22: *  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
                     23: *
                     24: *  Arguments
                     25: *  =========
                     26: *
                     27: *  M       (input) INTEGER
                     28: *          The number of rows in the matrix A.  M >= 0.
                     29: *
                     30: *  N       (input) INTEGER
                     31: *          The number of columns in the matrix A.  N >= 0.
                     32: *
                     33: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     34: *          On entry, the m by n general matrix to be reduced.
                     35: *          On exit,
                     36: *          if m >= n, the diagonal and the first superdiagonal are
                     37: *            overwritten with the upper bidiagonal matrix B; the
                     38: *            elements below the diagonal, with the array TAUQ, represent
                     39: *            the unitary matrix Q as a product of elementary
                     40: *            reflectors, and the elements above the first superdiagonal,
                     41: *            with the array TAUP, represent the unitary matrix P as
                     42: *            a product of elementary reflectors;
                     43: *          if m < n, the diagonal and the first subdiagonal are
                     44: *            overwritten with the lower bidiagonal matrix B; the
                     45: *            elements below the first subdiagonal, with the array TAUQ,
                     46: *            represent the unitary matrix Q as a product of
                     47: *            elementary reflectors, and the elements above the diagonal,
                     48: *            with the array TAUP, represent the unitary matrix P as
                     49: *            a product of elementary reflectors.
                     50: *          See Further Details.
                     51: *
                     52: *  LDA     (input) INTEGER
                     53: *          The leading dimension of the array A.  LDA >= max(1,M).
                     54: *
                     55: *  D       (output) DOUBLE PRECISION array, dimension (min(M,N))
                     56: *          The diagonal elements of the bidiagonal matrix B:
                     57: *          D(i) = A(i,i).
                     58: *
                     59: *  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
                     60: *          The off-diagonal elements of the bidiagonal matrix B:
                     61: *          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
                     62: *          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
                     63: *
                     64: *  TAUQ    (output) COMPLEX*16 array dimension (min(M,N))
                     65: *          The scalar factors of the elementary reflectors which
                     66: *          represent the unitary matrix Q. See Further Details.
                     67: *
                     68: *  TAUP    (output) COMPLEX*16 array, dimension (min(M,N))
                     69: *          The scalar factors of the elementary reflectors which
                     70: *          represent the unitary matrix P. See Further Details.
                     71: *
                     72: *  WORK    (workspace) COMPLEX*16 array, dimension (max(M,N))
                     73: *
                     74: *  INFO    (output) INTEGER
                     75: *          = 0: successful exit
                     76: *          < 0: if INFO = -i, the i-th argument had an illegal value.
                     77: *
                     78: *  Further Details
                     79: *  ===============
                     80: *
                     81: *  The matrices Q and P are represented as products of elementary
                     82: *  reflectors:
                     83: *
                     84: *  If m >= n,
                     85: *
                     86: *     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
                     87: *
                     88: *  Each H(i) and G(i) has the form:
                     89: *
                     90: *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
                     91: *
                     92: *  where tauq and taup are complex scalars, and v and u are complex
                     93: *  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
                     94: *  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
                     95: *  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
                     96: *
                     97: *  If m < n,
                     98: *
                     99: *     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
                    100: *
                    101: *  Each H(i) and G(i) has the form:
                    102: *
                    103: *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
                    104: *
                    105: *  where tauq and taup are complex scalars, v and u are complex vectors;
                    106: *  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
                    107: *  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
                    108: *  tauq is stored in TAUQ(i) and taup in TAUP(i).
                    109: *
                    110: *  The contents of A on exit are illustrated by the following examples:
                    111: *
                    112: *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
                    113: *
                    114: *    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
                    115: *    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
                    116: *    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
                    117: *    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
                    118: *    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
                    119: *    (  v1  v2  v3  v4  v5 )
                    120: *
                    121: *  where d and e denote diagonal and off-diagonal elements of B, vi
                    122: *  denotes an element of the vector defining H(i), and ui an element of
                    123: *  the vector defining G(i).
                    124: *
                    125: *  =====================================================================
                    126: *
                    127: *     .. Parameters ..
                    128:       COMPLEX*16         ZERO, ONE
                    129:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
                    130:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
                    131: *     ..
                    132: *     .. Local Scalars ..
                    133:       INTEGER            I
                    134:       COMPLEX*16         ALPHA
                    135: *     ..
                    136: *     .. External Subroutines ..
                    137:       EXTERNAL           XERBLA, ZLACGV, ZLARF, ZLARFG
                    138: *     ..
                    139: *     .. Intrinsic Functions ..
                    140:       INTRINSIC          DCONJG, MAX, MIN
                    141: *     ..
                    142: *     .. Executable Statements ..
                    143: *
                    144: *     Test the input parameters
                    145: *
                    146:       INFO = 0
                    147:       IF( M.LT.0 ) THEN
                    148:          INFO = -1
                    149:       ELSE IF( N.LT.0 ) THEN
                    150:          INFO = -2
                    151:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    152:          INFO = -4
                    153:       END IF
                    154:       IF( INFO.LT.0 ) THEN
                    155:          CALL XERBLA( 'ZGEBD2', -INFO )
                    156:          RETURN
                    157:       END IF
                    158: *
                    159:       IF( M.GE.N ) THEN
                    160: *
                    161: *        Reduce to upper bidiagonal form
                    162: *
                    163:          DO 10 I = 1, N
                    164: *
                    165: *           Generate elementary reflector H(i) to annihilate A(i+1:m,i)
                    166: *
                    167:             ALPHA = A( I, I )
                    168:             CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
                    169:      $                   TAUQ( I ) )
                    170:             D( I ) = ALPHA
                    171:             A( I, I ) = ONE
                    172: *
                    173: *           Apply H(i)' to A(i:m,i+1:n) from the left
                    174: *
                    175:             IF( I.LT.N )
                    176:      $         CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
                    177:      $                     DCONJG( TAUQ( I ) ), A( I, I+1 ), LDA, WORK )
                    178:             A( I, I ) = D( I )
                    179: *
                    180:             IF( I.LT.N ) THEN
                    181: *
                    182: *              Generate elementary reflector G(i) to annihilate
                    183: *              A(i,i+2:n)
                    184: *
                    185:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    186:                ALPHA = A( I, I+1 )
                    187:                CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
                    188:      $                      TAUP( I ) )
                    189:                E( I ) = ALPHA
                    190:                A( I, I+1 ) = ONE
                    191: *
                    192: *              Apply G(i) to A(i+1:m,i+1:n) from the right
                    193: *
                    194:                CALL ZLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
                    195:      $                     TAUP( I ), A( I+1, I+1 ), LDA, WORK )
                    196:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    197:                A( I, I+1 ) = E( I )
                    198:             ELSE
                    199:                TAUP( I ) = ZERO
                    200:             END IF
                    201:    10    CONTINUE
                    202:       ELSE
                    203: *
                    204: *        Reduce to lower bidiagonal form
                    205: *
                    206:          DO 20 I = 1, M
                    207: *
                    208: *           Generate elementary reflector G(i) to annihilate A(i,i+1:n)
                    209: *
                    210:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    211:             ALPHA = A( I, I )
                    212:             CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
                    213:      $                   TAUP( I ) )
                    214:             D( I ) = ALPHA
                    215:             A( I, I ) = ONE
                    216: *
                    217: *           Apply G(i) to A(i+1:m,i:n) from the right
                    218: *
                    219:             IF( I.LT.M )
                    220:      $         CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
                    221:      $                     TAUP( I ), A( I+1, I ), LDA, WORK )
                    222:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    223:             A( I, I ) = D( I )
                    224: *
                    225:             IF( I.LT.M ) THEN
                    226: *
                    227: *              Generate elementary reflector H(i) to annihilate
                    228: *              A(i+2:m,i)
                    229: *
                    230:                ALPHA = A( I+1, I )
                    231:                CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
                    232:      $                      TAUQ( I ) )
                    233:                E( I ) = ALPHA
                    234:                A( I+1, I ) = ONE
                    235: *
                    236: *              Apply H(i)' to A(i+1:m,i+1:n) from the left
                    237: *
                    238:                CALL ZLARF( 'Left', M-I, N-I, A( I+1, I ), 1,
                    239:      $                     DCONJG( TAUQ( I ) ), A( I+1, I+1 ), LDA,
                    240:      $                     WORK )
                    241:                A( I+1, I ) = E( I )
                    242:             ELSE
                    243:                TAUQ( I ) = ZERO
                    244:             END IF
                    245:    20    CONTINUE
                    246:       END IF
                    247:       RETURN
                    248: *
                    249: *     End of ZGEBD2
                    250: *
                    251:       END

CVSweb interface <joel.bertrand@systella.fr>