File:  [local] / rpl / lapack / lapack / zcposv.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:15 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZCPOSV computes the solution to system of linear equations A * X = B for PO matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZCPOSV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcposv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcposv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcposv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
   22: *                          SWORK, RWORK, ITER, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   RWORK( * )
   30: *       COMPLEX            SWORK( * )
   31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
   32: *      $                   X( LDX, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZCPOSV computes the solution to a complex system of linear equations
   42: *>    A * X = B,
   43: *> where A is an N-by-N Hermitian positive definite matrix and X and B
   44: *> are N-by-NRHS matrices.
   45: *>
   46: *> ZCPOSV first attempts to factorize the matrix in COMPLEX and use this
   47: *> factorization within an iterative refinement procedure to produce a
   48: *> solution with COMPLEX*16 normwise backward error quality (see below).
   49: *> If the approach fails the method switches to a COMPLEX*16
   50: *> factorization and solve.
   51: *>
   52: *> The iterative refinement is not going to be a winning strategy if
   53: *> the ratio COMPLEX performance over COMPLEX*16 performance is too
   54: *> small. A reasonable strategy should take the number of right-hand
   55: *> sides and the size of the matrix into account. This might be done
   56: *> with a call to ILAENV in the future. Up to now, we always try
   57: *> iterative refinement.
   58: *>
   59: *> The iterative refinement process is stopped if
   60: *>     ITER > ITERMAX
   61: *> or for all the RHS we have:
   62: *>     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
   63: *> where
   64: *>     o ITER is the number of the current iteration in the iterative
   65: *>       refinement process
   66: *>     o RNRM is the infinity-norm of the residual
   67: *>     o XNRM is the infinity-norm of the solution
   68: *>     o ANRM is the infinity-operator-norm of the matrix A
   69: *>     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
   70: *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
   71: *> respectively.
   72: *> \endverbatim
   73: *
   74: *  Arguments:
   75: *  ==========
   76: *
   77: *> \param[in] UPLO
   78: *> \verbatim
   79: *>          UPLO is CHARACTER*1
   80: *>          = 'U':  Upper triangle of A is stored;
   81: *>          = 'L':  Lower triangle of A is stored.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] N
   85: *> \verbatim
   86: *>          N is INTEGER
   87: *>          The number of linear equations, i.e., the order of the
   88: *>          matrix A.  N >= 0.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] NRHS
   92: *> \verbatim
   93: *>          NRHS is INTEGER
   94: *>          The number of right hand sides, i.e., the number of columns
   95: *>          of the matrix B.  NRHS >= 0.
   96: *> \endverbatim
   97: *>
   98: *> \param[in,out] A
   99: *> \verbatim
  100: *>          A is COMPLEX*16 array,
  101: *>          dimension (LDA,N)
  102: *>          On entry, the Hermitian matrix A. If UPLO = 'U', the leading
  103: *>          N-by-N upper triangular part of A contains the upper
  104: *>          triangular part of the matrix A, and the strictly lower
  105: *>          triangular part of A is not referenced.  If UPLO = 'L', the
  106: *>          leading N-by-N lower triangular part of A contains the lower
  107: *>          triangular part of the matrix A, and the strictly upper
  108: *>          triangular part of A is not referenced.
  109: *>
  110: *>          Note that the imaginary parts of the diagonal
  111: *>          elements need not be set and are assumed to be zero.
  112: *>
  113: *>          On exit, if iterative refinement has been successfully used
  114: *>          (INFO = 0 and ITER >= 0, see description below), then A is
  115: *>          unchanged, if double precision factorization has been used
  116: *>          (INFO = 0 and ITER < 0, see description below), then the
  117: *>          array A contains the factor U or L from the Cholesky
  118: *>          factorization A = U**H*U or A = L*L**H.
  119: *> \endverbatim
  120: *>
  121: *> \param[in] LDA
  122: *> \verbatim
  123: *>          LDA is INTEGER
  124: *>          The leading dimension of the array A.  LDA >= max(1,N).
  125: *> \endverbatim
  126: *>
  127: *> \param[in] B
  128: *> \verbatim
  129: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  130: *>          The N-by-NRHS right hand side matrix B.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] LDB
  134: *> \verbatim
  135: *>          LDB is INTEGER
  136: *>          The leading dimension of the array B.  LDB >= max(1,N).
  137: *> \endverbatim
  138: *>
  139: *> \param[out] X
  140: *> \verbatim
  141: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  142: *>          If INFO = 0, the N-by-NRHS solution matrix X.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LDX
  146: *> \verbatim
  147: *>          LDX is INTEGER
  148: *>          The leading dimension of the array X.  LDX >= max(1,N).
  149: *> \endverbatim
  150: *>
  151: *> \param[out] WORK
  152: *> \verbatim
  153: *>          WORK is COMPLEX*16 array, dimension (N,NRHS)
  154: *>          This array is used to hold the residual vectors.
  155: *> \endverbatim
  156: *>
  157: *> \param[out] SWORK
  158: *> \verbatim
  159: *>          SWORK is COMPLEX array, dimension (N*(N+NRHS))
  160: *>          This array is used to use the single precision matrix and the
  161: *>          right-hand sides or solutions in single precision.
  162: *> \endverbatim
  163: *>
  164: *> \param[out] RWORK
  165: *> \verbatim
  166: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  167: *> \endverbatim
  168: *>
  169: *> \param[out] ITER
  170: *> \verbatim
  171: *>          ITER is INTEGER
  172: *>          < 0: iterative refinement has failed, COMPLEX*16
  173: *>               factorization has been performed
  174: *>               -1 : the routine fell back to full precision for
  175: *>                    implementation- or machine-specific reasons
  176: *>               -2 : narrowing the precision induced an overflow,
  177: *>                    the routine fell back to full precision
  178: *>               -3 : failure of CPOTRF
  179: *>               -31: stop the iterative refinement after the 30th
  180: *>                    iterations
  181: *>          > 0: iterative refinement has been successfully used.
  182: *>               Returns the number of iterations
  183: *> \endverbatim
  184: *>
  185: *> \param[out] INFO
  186: *> \verbatim
  187: *>          INFO is INTEGER
  188: *>          = 0:  successful exit
  189: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  190: *>          > 0:  if INFO = i, the leading minor of order i of
  191: *>                (COMPLEX*16) A is not positive definite, so the
  192: *>                factorization could not be completed, and the solution
  193: *>                has not been computed.
  194: *> \endverbatim
  195: *
  196: *  Authors:
  197: *  ========
  198: *
  199: *> \author Univ. of Tennessee
  200: *> \author Univ. of California Berkeley
  201: *> \author Univ. of Colorado Denver
  202: *> \author NAG Ltd.
  203: *
  204: *> \ingroup complex16POsolve
  205: *
  206: *  =====================================================================
  207:       SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
  208:      $                   SWORK, RWORK, ITER, INFO )
  209: *
  210: *  -- LAPACK driver routine --
  211: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  212: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  213: *
  214: *     .. Scalar Arguments ..
  215:       CHARACTER          UPLO
  216:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
  217: *     ..
  218: *     .. Array Arguments ..
  219:       DOUBLE PRECISION   RWORK( * )
  220:       COMPLEX            SWORK( * )
  221:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
  222:      $                   X( LDX, * )
  223: *     ..
  224: *
  225: *  =====================================================================
  226: *
  227: *     .. Parameters ..
  228:       LOGICAL            DOITREF
  229:       PARAMETER          ( DOITREF = .TRUE. )
  230: *
  231:       INTEGER            ITERMAX
  232:       PARAMETER          ( ITERMAX = 30 )
  233: *
  234:       DOUBLE PRECISION   BWDMAX
  235:       PARAMETER          ( BWDMAX = 1.0E+00 )
  236: *
  237:       COMPLEX*16         NEGONE, ONE
  238:       PARAMETER          ( NEGONE = ( -1.0D+00, 0.0D+00 ),
  239:      $                   ONE = ( 1.0D+00, 0.0D+00 ) )
  240: *
  241: *     .. Local Scalars ..
  242:       INTEGER            I, IITER, PTSA, PTSX
  243:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
  244:       COMPLEX*16         ZDUM
  245: *
  246: *     .. External Subroutines ..
  247:       EXTERNAL           ZAXPY, ZHEMM, ZLACPY, ZLAT2C, ZLAG2C, CLAG2Z,
  248:      $                   CPOTRF, CPOTRS, XERBLA, ZPOTRF, ZPOTRS
  249: *     ..
  250: *     .. External Functions ..
  251:       INTEGER            IZAMAX
  252:       DOUBLE PRECISION   DLAMCH, ZLANHE
  253:       LOGICAL            LSAME
  254:       EXTERNAL           IZAMAX, DLAMCH, ZLANHE, LSAME
  255: *     ..
  256: *     .. Intrinsic Functions ..
  257:       INTRINSIC          ABS, DBLE, MAX, SQRT
  258: *     .. Statement Functions ..
  259:       DOUBLE PRECISION   CABS1
  260: *     ..
  261: *     .. Statement Function definitions ..
  262:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  263: *     ..
  264: *     .. Executable Statements ..
  265: *
  266:       INFO = 0
  267:       ITER = 0
  268: *
  269: *     Test the input parameters.
  270: *
  271:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  272:          INFO = -1
  273:       ELSE IF( N.LT.0 ) THEN
  274:          INFO = -2
  275:       ELSE IF( NRHS.LT.0 ) THEN
  276:          INFO = -3
  277:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  278:          INFO = -5
  279:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  280:          INFO = -7
  281:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  282:          INFO = -9
  283:       END IF
  284:       IF( INFO.NE.0 ) THEN
  285:          CALL XERBLA( 'ZCPOSV', -INFO )
  286:          RETURN
  287:       END IF
  288: *
  289: *     Quick return if (N.EQ.0).
  290: *
  291:       IF( N.EQ.0 )
  292:      $   RETURN
  293: *
  294: *     Skip single precision iterative refinement if a priori slower
  295: *     than double precision factorization.
  296: *
  297:       IF( .NOT.DOITREF ) THEN
  298:          ITER = -1
  299:          GO TO 40
  300:       END IF
  301: *
  302: *     Compute some constants.
  303: *
  304:       ANRM = ZLANHE( 'I', UPLO, N, A, LDA, RWORK )
  305:       EPS = DLAMCH( 'Epsilon' )
  306:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
  307: *
  308: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
  309: *
  310:       PTSA = 1
  311:       PTSX = PTSA + N*N
  312: *
  313: *     Convert B from double precision to single precision and store the
  314: *     result in SX.
  315: *
  316:       CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
  317: *
  318:       IF( INFO.NE.0 ) THEN
  319:          ITER = -2
  320:          GO TO 40
  321:       END IF
  322: *
  323: *     Convert A from double precision to single precision and store the
  324: *     result in SA.
  325: *
  326:       CALL ZLAT2C( UPLO, N, A, LDA, SWORK( PTSA ), N, INFO )
  327: *
  328:       IF( INFO.NE.0 ) THEN
  329:          ITER = -2
  330:          GO TO 40
  331:       END IF
  332: *
  333: *     Compute the Cholesky factorization of SA.
  334: *
  335:       CALL CPOTRF( UPLO, N, SWORK( PTSA ), N, INFO )
  336: *
  337:       IF( INFO.NE.0 ) THEN
  338:          ITER = -3
  339:          GO TO 40
  340:       END IF
  341: *
  342: *     Solve the system SA*SX = SB.
  343: *
  344:       CALL CPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
  345:      $             INFO )
  346: *
  347: *     Convert SX back to COMPLEX*16
  348: *
  349:       CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
  350: *
  351: *     Compute R = B - AX (R is WORK).
  352: *
  353:       CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  354: *
  355:       CALL ZHEMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
  356:      $            WORK, N )
  357: *
  358: *     Check whether the NRHS normwise backward errors satisfy the
  359: *     stopping criterion. If yes, set ITER=0 and return.
  360: *
  361:       DO I = 1, NRHS
  362:          XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  363:          RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  364:          IF( RNRM.GT.XNRM*CTE )
  365:      $      GO TO 10
  366:       END DO
  367: *
  368: *     If we are here, the NRHS normwise backward errors satisfy the
  369: *     stopping criterion. We are good to exit.
  370: *
  371:       ITER = 0
  372:       RETURN
  373: *
  374:    10 CONTINUE
  375: *
  376:       DO 30 IITER = 1, ITERMAX
  377: *
  378: *        Convert R (in WORK) from double precision to single precision
  379: *        and store the result in SX.
  380: *
  381:          CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
  382: *
  383:          IF( INFO.NE.0 ) THEN
  384:             ITER = -2
  385:             GO TO 40
  386:          END IF
  387: *
  388: *        Solve the system SA*SX = SR.
  389: *
  390:          CALL CPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
  391:      $                INFO )
  392: *
  393: *        Convert SX back to double precision and update the current
  394: *        iterate.
  395: *
  396:          CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
  397: *
  398:          DO I = 1, NRHS
  399:             CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
  400:          END DO
  401: *
  402: *        Compute R = B - AX (R is WORK).
  403: *
  404:          CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  405: *
  406:          CALL ZHEMM( 'L', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
  407:      $               WORK, N )
  408: *
  409: *        Check whether the NRHS normwise backward errors satisfy the
  410: *        stopping criterion. If yes, set ITER=IITER>0 and return.
  411: *
  412:          DO I = 1, NRHS
  413:             XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  414:             RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  415:             IF( RNRM.GT.XNRM*CTE )
  416:      $         GO TO 20
  417:          END DO
  418: *
  419: *        If we are here, the NRHS normwise backward errors satisfy the
  420: *        stopping criterion, we are good to exit.
  421: *
  422:          ITER = IITER
  423: *
  424:          RETURN
  425: *
  426:    20    CONTINUE
  427: *
  428:    30 CONTINUE
  429: *
  430: *     If we are at this place of the code, this is because we have
  431: *     performed ITER=ITERMAX iterations and never satisfied the
  432: *     stopping criterion, set up the ITER flag accordingly and follow
  433: *     up on double precision routine.
  434: *
  435:       ITER = -ITERMAX - 1
  436: *
  437:    40 CONTINUE
  438: *
  439: *     Single-precision iterative refinement failed to converge to a
  440: *     satisfactory solution, so we resort to double precision.
  441: *
  442:       CALL ZPOTRF( UPLO, N, A, LDA, INFO )
  443: *
  444:       IF( INFO.NE.0 )
  445:      $   RETURN
  446: *
  447:       CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
  448:       CALL ZPOTRS( UPLO, N, NRHS, A, LDA, X, LDX, INFO )
  449: *
  450:       RETURN
  451: *
  452: *     End of ZCPOSV
  453: *
  454:       END

CVSweb interface <joel.bertrand@systella.fr>