Annotation of rpl/lapack/lapack/zcposv.f, revision 1.19

1.7       bertrand    1: *> \brief <b> ZCPOSV computes the solution to system of linear equations A * X = B for PO matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.7       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download ZCPOSV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcposv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcposv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcposv.f">
1.7       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.7       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
                     22: *                          SWORK, RWORK, ITER, INFO )
1.14      bertrand   23: *
1.7       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          UPLO
                     26: *       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   RWORK( * )
                     30: *       COMPLEX            SWORK( * )
                     31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
                     32: *      $                   X( LDX, * )
                     33: *       ..
1.14      bertrand   34: *
1.7       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> ZCPOSV computes the solution to a complex system of linear equations
                     42: *>    A * X = B,
                     43: *> where A is an N-by-N Hermitian positive definite matrix and X and B
                     44: *> are N-by-NRHS matrices.
                     45: *>
                     46: *> ZCPOSV first attempts to factorize the matrix in COMPLEX and use this
                     47: *> factorization within an iterative refinement procedure to produce a
                     48: *> solution with COMPLEX*16 normwise backward error quality (see below).
                     49: *> If the approach fails the method switches to a COMPLEX*16
                     50: *> factorization and solve.
                     51: *>
                     52: *> The iterative refinement is not going to be a winning strategy if
                     53: *> the ratio COMPLEX performance over COMPLEX*16 performance is too
                     54: *> small. A reasonable strategy should take the number of right-hand
                     55: *> sides and the size of the matrix into account. This might be done
                     56: *> with a call to ILAENV in the future. Up to now, we always try
                     57: *> iterative refinement.
                     58: *>
                     59: *> The iterative refinement process is stopped if
                     60: *>     ITER > ITERMAX
                     61: *> or for all the RHS we have:
                     62: *>     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
                     63: *> where
                     64: *>     o ITER is the number of the current iteration in the iterative
                     65: *>       refinement process
                     66: *>     o RNRM is the infinity-norm of the residual
                     67: *>     o XNRM is the infinity-norm of the solution
                     68: *>     o ANRM is the infinity-operator-norm of the matrix A
                     69: *>     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
                     70: *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
                     71: *> respectively.
                     72: *> \endverbatim
                     73: *
                     74: *  Arguments:
                     75: *  ==========
                     76: *
                     77: *> \param[in] UPLO
                     78: *> \verbatim
                     79: *>          UPLO is CHARACTER*1
                     80: *>          = 'U':  Upper triangle of A is stored;
                     81: *>          = 'L':  Lower triangle of A is stored.
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] N
                     85: *> \verbatim
                     86: *>          N is INTEGER
                     87: *>          The number of linear equations, i.e., the order of the
                     88: *>          matrix A.  N >= 0.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] NRHS
                     92: *> \verbatim
                     93: *>          NRHS is INTEGER
                     94: *>          The number of right hand sides, i.e., the number of columns
                     95: *>          of the matrix B.  NRHS >= 0.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in,out] A
                     99: *> \verbatim
                    100: *>          A is COMPLEX*16 array,
                    101: *>          dimension (LDA,N)
                    102: *>          On entry, the Hermitian matrix A. If UPLO = 'U', the leading
                    103: *>          N-by-N upper triangular part of A contains the upper
                    104: *>          triangular part of the matrix A, and the strictly lower
                    105: *>          triangular part of A is not referenced.  If UPLO = 'L', the
                    106: *>          leading N-by-N lower triangular part of A contains the lower
                    107: *>          triangular part of the matrix A, and the strictly upper
                    108: *>          triangular part of A is not referenced.
                    109: *>
                    110: *>          Note that the imaginary parts of the diagonal
                    111: *>          elements need not be set and are assumed to be zero.
                    112: *>
                    113: *>          On exit, if iterative refinement has been successfully used
1.18      bertrand  114: *>          (INFO = 0 and ITER >= 0, see description below), then A is
1.7       bertrand  115: *>          unchanged, if double precision factorization has been used
1.18      bertrand  116: *>          (INFO = 0 and ITER < 0, see description below), then the
1.7       bertrand  117: *>          array A contains the factor U or L from the Cholesky
                    118: *>          factorization A = U**H*U or A = L*L**H.
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[in] LDA
                    122: *> \verbatim
                    123: *>          LDA is INTEGER
                    124: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in] B
                    128: *> \verbatim
                    129: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    130: *>          The N-by-NRHS right hand side matrix B.
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in] LDB
                    134: *> \verbatim
                    135: *>          LDB is INTEGER
                    136: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[out] X
                    140: *> \verbatim
                    141: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    142: *>          If INFO = 0, the N-by-NRHS solution matrix X.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] LDX
                    146: *> \verbatim
                    147: *>          LDX is INTEGER
                    148: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    149: *> \endverbatim
                    150: *>
                    151: *> \param[out] WORK
                    152: *> \verbatim
1.16      bertrand  153: *>          WORK is COMPLEX*16 array, dimension (N,NRHS)
1.7       bertrand  154: *>          This array is used to hold the residual vectors.
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[out] SWORK
                    158: *> \verbatim
                    159: *>          SWORK is COMPLEX array, dimension (N*(N+NRHS))
                    160: *>          This array is used to use the single precision matrix and the
                    161: *>          right-hand sides or solutions in single precision.
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] RWORK
                    165: *> \verbatim
                    166: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    167: *> \endverbatim
                    168: *>
                    169: *> \param[out] ITER
                    170: *> \verbatim
                    171: *>          ITER is INTEGER
                    172: *>          < 0: iterative refinement has failed, COMPLEX*16
                    173: *>               factorization has been performed
                    174: *>               -1 : the routine fell back to full precision for
                    175: *>                    implementation- or machine-specific reasons
                    176: *>               -2 : narrowing the precision induced an overflow,
                    177: *>                    the routine fell back to full precision
                    178: *>               -3 : failure of CPOTRF
                    179: *>               -31: stop the iterative refinement after the 30th
                    180: *>                    iterations
1.12      bertrand  181: *>          > 0: iterative refinement has been successfully used.
1.7       bertrand  182: *>               Returns the number of iterations
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[out] INFO
                    186: *> \verbatim
                    187: *>          INFO is INTEGER
                    188: *>          = 0:  successful exit
                    189: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    190: *>          > 0:  if INFO = i, the leading minor of order i of
                    191: *>                (COMPLEX*16) A is not positive definite, so the
                    192: *>                factorization could not be completed, and the solution
                    193: *>                has not been computed.
                    194: *> \endverbatim
                    195: *
                    196: *  Authors:
                    197: *  ========
                    198: *
1.14      bertrand  199: *> \author Univ. of Tennessee
                    200: *> \author Univ. of California Berkeley
                    201: *> \author Univ. of Colorado Denver
                    202: *> \author NAG Ltd.
1.7       bertrand  203: *
                    204: *> \ingroup complex16POsolve
                    205: *
                    206: *  =====================================================================
1.1       bertrand  207:       SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
1.6       bertrand  208:      $                   SWORK, RWORK, ITER, INFO )
1.1       bertrand  209: *
1.19    ! bertrand  210: *  -- LAPACK driver routine --
1.1       bertrand  211: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    212: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.7       bertrand  213: *
1.1       bertrand  214: *     .. Scalar Arguments ..
                    215:       CHARACTER          UPLO
                    216:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                    217: *     ..
                    218: *     .. Array Arguments ..
                    219:       DOUBLE PRECISION   RWORK( * )
                    220:       COMPLEX            SWORK( * )
                    221:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
1.6       bertrand  222:      $                   X( LDX, * )
1.1       bertrand  223: *     ..
                    224: *
1.6       bertrand  225: *  =====================================================================
1.1       bertrand  226: *
                    227: *     .. Parameters ..
                    228:       LOGICAL            DOITREF
                    229:       PARAMETER          ( DOITREF = .TRUE. )
                    230: *
                    231:       INTEGER            ITERMAX
                    232:       PARAMETER          ( ITERMAX = 30 )
                    233: *
                    234:       DOUBLE PRECISION   BWDMAX
                    235:       PARAMETER          ( BWDMAX = 1.0E+00 )
                    236: *
                    237:       COMPLEX*16         NEGONE, ONE
                    238:       PARAMETER          ( NEGONE = ( -1.0D+00, 0.0D+00 ),
1.6       bertrand  239:      $                   ONE = ( 1.0D+00, 0.0D+00 ) )
1.1       bertrand  240: *
                    241: *     .. Local Scalars ..
                    242:       INTEGER            I, IITER, PTSA, PTSX
                    243:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
                    244:       COMPLEX*16         ZDUM
                    245: *
                    246: *     .. External Subroutines ..
                    247:       EXTERNAL           ZAXPY, ZHEMM, ZLACPY, ZLAT2C, ZLAG2C, CLAG2Z,
1.16      bertrand  248:      $                   CPOTRF, CPOTRS, XERBLA, ZPOTRF, ZPOTRS
1.1       bertrand  249: *     ..
                    250: *     .. External Functions ..
                    251:       INTEGER            IZAMAX
                    252:       DOUBLE PRECISION   DLAMCH, ZLANHE
                    253:       LOGICAL            LSAME
                    254:       EXTERNAL           IZAMAX, DLAMCH, ZLANHE, LSAME
                    255: *     ..
                    256: *     .. Intrinsic Functions ..
                    257:       INTRINSIC          ABS, DBLE, MAX, SQRT
                    258: *     .. Statement Functions ..
                    259:       DOUBLE PRECISION   CABS1
                    260: *     ..
                    261: *     .. Statement Function definitions ..
                    262:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    263: *     ..
                    264: *     .. Executable Statements ..
                    265: *
                    266:       INFO = 0
                    267:       ITER = 0
                    268: *
                    269: *     Test the input parameters.
                    270: *
                    271:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    272:          INFO = -1
                    273:       ELSE IF( N.LT.0 ) THEN
                    274:          INFO = -2
                    275:       ELSE IF( NRHS.LT.0 ) THEN
                    276:          INFO = -3
                    277:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    278:          INFO = -5
                    279:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    280:          INFO = -7
                    281:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    282:          INFO = -9
                    283:       END IF
                    284:       IF( INFO.NE.0 ) THEN
                    285:          CALL XERBLA( 'ZCPOSV', -INFO )
                    286:          RETURN
                    287:       END IF
                    288: *
                    289: *     Quick return if (N.EQ.0).
                    290: *
                    291:       IF( N.EQ.0 )
1.6       bertrand  292:      $   RETURN
1.1       bertrand  293: *
                    294: *     Skip single precision iterative refinement if a priori slower
                    295: *     than double precision factorization.
                    296: *
                    297:       IF( .NOT.DOITREF ) THEN
                    298:          ITER = -1
                    299:          GO TO 40
                    300:       END IF
                    301: *
                    302: *     Compute some constants.
                    303: *
                    304:       ANRM = ZLANHE( 'I', UPLO, N, A, LDA, RWORK )
                    305:       EPS = DLAMCH( 'Epsilon' )
                    306:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
                    307: *
                    308: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
                    309: *
                    310:       PTSA = 1
                    311:       PTSX = PTSA + N*N
                    312: *
                    313: *     Convert B from double precision to single precision and store the
                    314: *     result in SX.
                    315: *
                    316:       CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
                    317: *
                    318:       IF( INFO.NE.0 ) THEN
                    319:          ITER = -2
                    320:          GO TO 40
                    321:       END IF
                    322: *
                    323: *     Convert A from double precision to single precision and store the
                    324: *     result in SA.
                    325: *
                    326:       CALL ZLAT2C( UPLO, N, A, LDA, SWORK( PTSA ), N, INFO )
                    327: *
                    328:       IF( INFO.NE.0 ) THEN
                    329:          ITER = -2
                    330:          GO TO 40
                    331:       END IF
                    332: *
                    333: *     Compute the Cholesky factorization of SA.
                    334: *
                    335:       CALL CPOTRF( UPLO, N, SWORK( PTSA ), N, INFO )
                    336: *
                    337:       IF( INFO.NE.0 ) THEN
                    338:          ITER = -3
                    339:          GO TO 40
                    340:       END IF
                    341: *
                    342: *     Solve the system SA*SX = SB.
                    343: *
                    344:       CALL CPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
1.6       bertrand  345:      $             INFO )
1.1       bertrand  346: *
                    347: *     Convert SX back to COMPLEX*16
                    348: *
                    349:       CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
                    350: *
                    351: *     Compute R = B - AX (R is WORK).
                    352: *
                    353:       CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    354: *
                    355:       CALL ZHEMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
1.6       bertrand  356:      $            WORK, N )
1.1       bertrand  357: *
                    358: *     Check whether the NRHS normwise backward errors satisfy the
                    359: *     stopping criterion. If yes, set ITER=0 and return.
                    360: *
                    361:       DO I = 1, NRHS
                    362:          XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
                    363:          RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
                    364:          IF( RNRM.GT.XNRM*CTE )
1.6       bertrand  365:      $      GO TO 10
1.1       bertrand  366:       END DO
                    367: *
                    368: *     If we are here, the NRHS normwise backward errors satisfy the
                    369: *     stopping criterion. We are good to exit.
                    370: *
                    371:       ITER = 0
                    372:       RETURN
                    373: *
                    374:    10 CONTINUE
                    375: *
                    376:       DO 30 IITER = 1, ITERMAX
                    377: *
                    378: *        Convert R (in WORK) from double precision to single precision
                    379: *        and store the result in SX.
                    380: *
                    381:          CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
                    382: *
                    383:          IF( INFO.NE.0 ) THEN
                    384:             ITER = -2
                    385:             GO TO 40
                    386:          END IF
                    387: *
                    388: *        Solve the system SA*SX = SR.
                    389: *
                    390:          CALL CPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
1.6       bertrand  391:      $                INFO )
1.1       bertrand  392: *
                    393: *        Convert SX back to double precision and update the current
                    394: *        iterate.
                    395: *
                    396:          CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
                    397: *
                    398:          DO I = 1, NRHS
                    399:             CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
                    400:          END DO
                    401: *
                    402: *        Compute R = B - AX (R is WORK).
                    403: *
                    404:          CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    405: *
                    406:          CALL ZHEMM( 'L', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
1.6       bertrand  407:      $               WORK, N )
1.1       bertrand  408: *
                    409: *        Check whether the NRHS normwise backward errors satisfy the
                    410: *        stopping criterion. If yes, set ITER=IITER>0 and return.
                    411: *
                    412:          DO I = 1, NRHS
                    413:             XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
                    414:             RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
                    415:             IF( RNRM.GT.XNRM*CTE )
1.6       bertrand  416:      $         GO TO 20
1.1       bertrand  417:          END DO
                    418: *
                    419: *        If we are here, the NRHS normwise backward errors satisfy the
                    420: *        stopping criterion, we are good to exit.
                    421: *
                    422:          ITER = IITER
                    423: *
                    424:          RETURN
                    425: *
                    426:    20    CONTINUE
                    427: *
                    428:    30 CONTINUE
                    429: *
                    430: *     If we are at this place of the code, this is because we have
1.18      bertrand  431: *     performed ITER=ITERMAX iterations and never satisfied the
1.1       bertrand  432: *     stopping criterion, set up the ITER flag accordingly and follow
                    433: *     up on double precision routine.
                    434: *
                    435:       ITER = -ITERMAX - 1
                    436: *
                    437:    40 CONTINUE
                    438: *
                    439: *     Single-precision iterative refinement failed to converge to a
                    440: *     satisfactory solution, so we resort to double precision.
                    441: *
                    442:       CALL ZPOTRF( UPLO, N, A, LDA, INFO )
                    443: *
                    444:       IF( INFO.NE.0 )
1.6       bertrand  445:      $   RETURN
1.1       bertrand  446: *
                    447:       CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
                    448:       CALL ZPOTRS( UPLO, N, NRHS, A, LDA, X, LDX, INFO )
                    449: *
                    450:       RETURN
                    451: *
1.19    ! bertrand  452: *     End of ZCPOSV
1.1       bertrand  453: *
                    454:       END

CVSweb interface <joel.bertrand@systella.fr>